J/ApJS/143/257 AGN emission line properties (Kuraszkiewicz+, 2002)
Emission line properties of active galactic nuclei from a pre-COSTAR
Faint Object Spectrograph Hubble Space Telescope spectral atlas.
Kuraszkiewicz J.K., Green P.J., Forster K., Aldcroft T.L., Evans I.N.,
Koratkar A.
<Astrophys. J. Suppl. Ser. 143, 257 (2002)>
=2002ApJS..143..257K 2002ApJS..143..257K
ADC_Keywords: Clusters, galaxy ; Active gal. nuclei ; Redshifts ;
Galaxies, spectra ; Spectra, ultraviolet
Keywords: galaxies: active - quasars: emission lines - quasars: general -
ultraviolet: galaxies
Abstract:
We present measurements of the UV/optical emission line parameters in
a sample of 158 active galactic nuclei observed with the Faint Object
Spectrograph on the Hubble Space Telescope (HST), prior to the
installation of COSTAR. We use an automated technique that accounts
for galactic reddening, includes iron emission blends, galactic and
intrinsic absorption lines, and performs multicomponent fits to the
emission line profiles. We present measured line parameters
(equivalent width and FWHM) for a large number (28) of different
UV/optical lines, including upper limits for undetected lines.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 55 174 List of the 158 objects and spectra
table4.dat 72 174 Continuum parameters
table5.dat 136 7482 Emission line measurements
--------------------------------------------------------------------------------
See also:
J/ApJS/150/165 : AGNs emission-line from Post-COSTAR (Kuraszkiewicz+, 2004)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 A9 --- Name Object designation (1)
11- 24 A14 --- CName Common name
26- 29 A4 --- Type AGN type (2)
31- 37 F7.4 --- z Redshift
39- 43 F5.2 10+20/cm2 NH Neutral hydrogen column density
45- 55 A11 --- NSpect Spectrum name (G1)
--------------------------------------------------------------------------------
Note (1): Based on the equinox J2000 position (in standard IAU format
consisting of HHMM±DDMM).
Note (2): AGN type:
Q = QSO
S1 = Seyfert 1
S2 = Seyfert 2
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- NSpect Spectrum name (G1)
12 A1 --- f_NSpect [*] See notes on spectra in Appendix
14- 18 F5.2 --- GammaUV UV power law continuum slope (2)
20- 23 F4.2 --- E_GammaUV ? Upper 2σ error in GammaUV
25- 29 F5.2 --- e_GammaUV ? Lower 2σ error in GammaUV
31- 36 F6.3 10-13mW/m2/nm F(norm) Normalization of UV power law in units
of 10-14erg/cm2/s/Å (2)
38- 42 F5.3 10-13mW/m2/nm E_F(norm) Upper 2σ error in Norm
44- 48 F5.3 10-13mW/m2/nm e_F(norm) Lower 2σ error in Norm
50- 55 F6.1 0.1nm WLnorm Observed wavelength in Angstroems
57- 61 F5.2 --- GammaOpt ? Optical power law continuum slope (2)
63- 66 F4.2 --- E_GammaOpt ? Upper 2σ error in GammaOpt
68- 71 F4.2 --- e_GammaOpt ? Lower 2σ error in GammaOpt
--------------------------------------------------------------------------------
Note (2): The dereddened continuum spectrum is fitted as
F(λ) = F(norm) . λ-GammaUV
for UV wavelengths (λrest<4200Å), and
F(λ) = F(norm) . λ-GammaOpt.
for optical wavelengths (λrest>4200Å).
Slopes with no listed errors show the assumed slope value in cases
where only a single continuum window was available.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- NSpect Spectrum name (G1)
13- 20 F8.5 --- z Redshift
22- 38 A17 --- Line Emission line identification
40- 44 I5 km/s FWHM Rest frame Full Width at Half Maximum
47- 51 I5 km/s E_FWHM Upper 2σ error limit on FWHM
53- 58 I6 km/s e_FWHM Lower 2σ error limit on FWHM
61- 65 I5 km/s VPeak Gaussian emission line model peak offset
from expected position based on tabulated
redshift
69- 72 I4 km/s E_VPeak Upper 2σ error limit on VPeak
74- 79 I6 km/s e_VPeak Lower 2σ error limit on VPeak
82- 88 F7.2 0.1nm EW Rest frame equivalent width in Angstroms
92- 97 F6.2 0.1nm E_EW Upper 2σ error limit on EW (1)
100-106 F7.2 0.1nm e_EW Lower 2σ error limit on EW (1)
109-115 F7.2 10-14mW/m2 Flux Observed flux in units of 10-14erg/s/cm2
119-124 F6.2 10-14mW/m2 E_Flux Upper 2σ error limit on Flux (1)
127-133 F7.2 10-14mW/m2 e_Flux Lower 2σ error limit on Flux (1)
135-136 I2 --- o_Line Number of narrow absorption features used in
the emission line modeling
--------------------------------------------------------------------------------
Note (1): Based on the uncertainties in the amplitude and FWHM of the
Gaussian model and do not include an error from an uncertainty in the
underlying continuum flux level which we estimate to be about 10%. For
emission lines where only an upper limit on Flux and EW is available,
no values for the VPeak are quoted as the position of the line was
fixed at the line's expected wavelength. Also, the FWHM value in this
case was set to the median value for the LBQS sample (see Table 3)
with no associated errors.
--------------------------------------------------------------------------------
Global notes:
Note (G1): Based on the equinox J2000 position (in standard IAU format
consisting of HHMM±DDMM). In addition to this, a two letter
designation is used for the spectra indicating that the spectra are
from a pre-COSTAR observation (r) and whether there is more than one
spectrum of the same object (a-z). A capital letter at the end of the
name indicates that the object is a gravitational lens and that
separate spectra of each lensed component were observed and analyzed.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Greg Schwarz [AAS], Patricia Bauer [CDS] 13-Jan-2003