J/ApJS/150/165      AGNs emission-line from Post-COSTAR   (Kuraszkiewicz+, 2004)

Emission line properties of active galactic nuclei from a Post-COSTAR Hubble Space Telescope Faint Object Spectrograph spectral atlas. Kuraszkiewicz J.K., Green P.J., Crenshaw D.M., Dunn J., Forster K., Vestergaard M., Aldcroft T.L. <Astrophys. J. Suppl. Ser., 150, 165 (2004)> =2004ApJS..150..165K 2004ApJS..150..165K
ADC_Keywords: Atlases ; Active gal. nuclei ; QSOs ; Spectra, ultraviolet Keywords: atlases - galaxies: active - quasars: emission lines - quasars: general - ultraviolet: galaxies Abstract: We present consistent emission-line measurements for active galactic nuclei (AGNs), useful for reliable statistical studies of emission line properties. This paper joins a series including similar measurements of 993 spectra from the Large Bright Quasar Survey and 174 spectra of AGNs obtained from the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST) prior to the installation of COSTAR. This time we concentrate on 220 spectra obtained with the FOS after the installation of COSTAR, completing the emission line analysis of all FOS archival spectra. We use the same automated technique as in previous papers, which accounts for Galactic extinction, models blended optical and UV iron emission, includes Galactic and intrinsic absorption lines, and models emission lines using multiple Gaussians. We present UV and optical emission line parameters (equivalent widths, fluxes, FWHM, and line positions) for a large number (28) of emission lines including upper limits for undetected lines. Further scientific analyses will be presented in subsequent papers. Description: The sample was assembled by cross-correlating the Veron-Cetty & Veron (1996ESOSR..17....1V 1996ESOSR..17....1V, Cat. VII/188, 7th Edition) catalog of AGNs with the MAST (Multimission Archive at Space Telescope) holdings. BL Lac objects were ignored, as their spectra show no emission lines. Starburst galaxies and broad absorption line (BAL) quasars (where emission lines are heavily disrupted by absorption features) were not included. We chose all available (UV and optical) spectrophotometric archival data that have been observed with the Faint Object Spectrograph (FOS) on HST after the installation of COSTAR (i.e., after 1993 December). FOS spectra obtained prior to 1993 December have been analyzed by us in Paper II (Kuraszkiewicz et al., 2002, Cat. J/ApJS/143/257). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 58 220 List of objects and spectra table2.dat 57 707 Representative list of objects and FOS spectra table3.dat 76 220 Continuum parameters table4a.dat 135 9460 Emission line measurements table4b.dat 155 220 Total line FWHM measurements -------------------------------------------------------------------------------- See also: J/ApJS/143/257 : AGN emission line properties (Kuraszkiewicz+, 2002) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- Name Object designation (1) 10 A1 --- f_Name [*] BL Lac object, see note (2) 12- 25 A14 --- CName Common name 27- 31 A5 --- Type AGN type (3) 33- 37 F5.3 --- z Redshift 40- 44 F5.2 10+20cm-2 NH Neutral hydrogen column density 46- 56 A11 --- NSpect Spectrum name (G1) -------------------------------------------------------------------------------- Note (1): Based on the equinox J2000 position (in standard IAU format consisting of HHMM±DDMM). Note (2): We include this BL Lac object as it shows weak emission lines. Note (3): AGN types are as follows: Q = QSO; Sy1 = Seyfert 1; Sy2 = Seyfert 2; NLS1 = Narrow Line Seyfert 1; NLRG = Narrow Line Radio Galaxy. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- NSpect Spectrum name (G1) 14- 22 A9 --- Dataset HST Dataset 26- 27 A2 --- Config FOC configuration 30- 34 A5 --- Grating Grating 37- 43 F7.1 s Exp Exposure time 47- 57 A11 "MMM-DD-YYYY" Time Date of observation -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- NSpect Spectrum name (G1) 12 A1 --- f_NSpect [*] See notes on spectra in Appendix 14- 18 F5.2 --- GammaUV ? UV power law continuum slope (2) 20- 23 F4.2 --- E_GammaUV ? Upper 2σ error in GammaUV 25- 29 F5.2 --- e_GammaUV ? Lower 2σ error in GammaUV 31- 36 F6.3 10-16W/m2/nm F(norm) Normalization of UV power law in units of 10-14erg/cm2/s/Å (2) 38- 42 F5.3 10-16W/m2/nm E_F(norm) Upper 2σ error in F(norm) 44- 48 F5.3 10-16W/m2/nm e_F(norm) Lower 2σ error in F(norm) 50- 55 F6.1 0.1nm WLnorm Observed norm wavelength in Angstroems 57- 61 F5.2 --- GammaOpt ? Optical power law continuum slope (2) 63- 68 F6.2 --- E_GammaOpt ? Upper 2σ error in GammaOpt 70- 74 F5.2 --- e_GammaOpt ? Lower 2σ error in GammaOpt -------------------------------------------------------------------------------- Note (2): The dereddened continuum spectrum is fitted as F(λ) = F(norm) . λ-GammaUV for UV wavelengths (λrest<4200Å), and F(λ) = F(norm) . λ-GammaOpt. for optical wavelengths (λrest>4200Å). Slopes with no listed errors show the assumed slope value in cases where only a single continuum window was available. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4a.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- NSpect Spectrum name (G1) 13- 20 F8.5 --- z Redshift 22- 38 A17 --- Line Emission line identification 40- 44 I5 km/s FWHM Rest frame Full Width at Half Maximum 47- 51 I5 km/s E_FWHM Upper 2σ error limit on FWHM 53- 57 I5 km/s e_FWHM Lower 2σ error limit on FWHM 60- 64 I5 km/s VPeak Gaussian emission line model peak offset from expected position based on tabulated redshift 67- 71 I5 km/s E_VPeak Upper 2σ error limit on VPeak 73- 77 I5 km/s e_VPeak Lower 2σ error limit on VPeak 80- 86 F7.2 0.1nm EW Rest frame equivalent width in Angstroms 90- 95 F6.2 0.1nm E_EW Upper 2σ error limit on EW (2) 98-103 F6.2 0.1nm e_EW Lower 2σ error limit on EW (2) 106-112 F7.2 10-17W/m2 Flux Observed flux in units of 10-14erg/s/cm2 116-121 F6.2 10-17W/m2 E_Flux Upper 2σ error limit on Flux (2) 124-129 F6.2 10-17W/m2 e_Flux Lower 2σ error limit on Flux (2) 131-132 I2 --- o_Line ? Number of narrow absorption features used in the emission line modeling -------------------------------------------------------------------------------- Note (2): Based on the uncertainties in the amplitude and FWHM of the Gaussian model and do not include an error from an uncertainty in the underlying continuum flux level which we estimate to be about 10%. For emission lines where only an upper limit on Flux and EW is available, no values for the VPeak are quoted as the position of the line was fixed at the line's expected wavelength. Also, the FWHM value in this case was set to the median value for the LBQS sample (see Table 3, Paper II, J/ApJS/143/257) with no associated errors. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4b.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- NSpect Spectrum name (G1) 14- 19 I6 km/s Lya ?=0 Rest frame FWHM of total Lyα 22- 27 I6 km/s E_Lya ?=0 Upper 2σ error limit on Lya 30- 35 I6 km/s e_Lya ?=0 Lower 2σ error limit on Lya 38- 43 I6 km/s CIV ?=0 Rest frame FWHM of total CIV 46- 51 I6 km/s E_CIV ?=0 Upper 2σ error limit on CIV 54- 59 I6 km/s e_CIV ?=0 Lower 2σ error limit on CIV 62- 67 I6 km/s CIII ?=0 Rest frame FWHM of total CIII] 70- 75 I6 km/s E_CIII ?=0 Upper 2σ error limit on CIII 78- 83 I6 km/s e_CIII ?=0 Lower 2σ error limit on CIII 86- 91 I6 km/s MgII ?=0 Rest frame FWHM of total MgII 94- 99 I6 km/s E_MgII ?=0 Upper 2σ error limit on MgII 102-107 I6 km/s e_MgII ?=0 Lower 2σ error limit on MgII 110-115 I6 km/s Hb ?=0 Rest frame FWHM of total Hβ 118-123 I6 km/s E_Hb ?=0 Upper 2σ error limit on Hb 126-131 I6 km/s e_Hb ?=0 Lower 2σ error limit on Hb 134-139 I6 km/s Ha ?=0 Rest frame FWHM of total Hα 142-147 I6 km/s E_Ha ?=0 Upper 2σ error limit on Ha 150-155 I6 km/s e_Ha ?=0 Lower 2σ error limit on Ha -------------------------------------------------------------------------------- Global notes: Note (G1): Based on the equinox J2000 position (in standard IAU format consisting of HHMM±DDMM). In addition to this, a two letter designation is used for the spectra indicating that the spectra are from a post-COSTAR observation (o) and whether there is more than one spectrum of the same object (a-z). A capital letter at the end of the name indicates that the object is a gravitational lens and that separate spectra of each lensed component were observed and analyzed. -------------------------------------------------------------------------------- History: From electronic version of the journal * 04-Dec-2004: a few modifications in the columns "NSpect" done at CDS: 0853+5118oa turned into 0853+5118oc (table1 & table2) 2156+7222oa turned into 2156+0722oa (table3) 1017-2046oa and 1017-2046ob turned into 1017-2046oA and 1017-2046oB (tables 4)
(End) Greg Schwarz [AAS], Patricia Vannier [CDS] 30-Jan-2004
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line