J/ApJS/182/51    Transition probabilities of rare earth elements (Lawler+, 2009)
Improved laboratory transition probabilities for Ce II, application to the
cerium abundances of the Sun and five r-process-rich, metal-poor
stars, and rare earth lab data summary.
    Lawler J.E., Sneden C., Cowan J.J., Ivans I.I., Den Hartog E.A.
   <Astrophys. J. Suppl. Ser., 182, 51-79 (2009)>
   =2009ApJS..182...51L 2009ApJS..182...51L
ADC_Keywords: Atomic physics
Keywords: atomic data - Galaxy: evolution - nuclear reactions, nucleosynthesis,
          abundances - stars: abundances - stars: individual (BD+17 3248,
          CS 22892-052, CS 31082-001, HD 115444, HD 221170)
          stars: Population II - Sun: abundances
Abstract:
    Recent radiative lifetime measurements accurate to ±5% using
    laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity
    levels of CeII have been combined with new branching fractions
    measured using a Fourier transform spectrometer (FTS) to determine
    transition probabilities for 921 lines of CeII. This improved
    laboratory data set has been used to determine a new solar
    photospheric Ce abundance, logε=1.61±0.01 (σ=0.06 from
    45 lines), a value in excellent agreement with the recommended
    meteoritic abundance, logε=1.61±0.02. Revised Ce abundances
    have also been derived for the r-process-rich metal-poor giant stars
    BD+17 3248, CS 22892-052, CS 31082-001, HD 115444, and HD 221170.
    Between 26 and 40 lines were used for determining the Ce abundance in
    these five stars, yielding a small statistical uncertainty of
    ±0.01dex similar to the solar result. The relative abundances in
    the metal-poor stars of Ce and Eu, a nearly pure r-process element in
    the Sun, matches r-process-only model predictions for solar system
    material. This consistent match with small scatter over a wide range
    of stellar metallicities lends support to these predictions of
    elemental fractions. A companion paper includes an interpretation of
    these new precision abundance results for Ce as well as new abundance
    results and interpretation for Pr, Dy, and Tm.
File Summary:
--------------------------------------------------------------------------------
 FileName  Lrecl  Records  Explanations
--------------------------------------------------------------------------------
ReadMe        80        .  This file
table2.dat    63      921  Atomic transition probabilities for CeII (Z=58)
                           organized by increasing wavelength in air
table5.dat    63       84  Experimental atomic transition probabilities for
                           LaII (Z=57) arranged by Wavenumber from Lawler et al.
                           (2001ApJ...556..452L 2001ApJ...556..452L)
table6.dat    63       24  Experimental atomic transition probabilities for
                           EuII (Z=63) arranged by wavenumber from Lawler et al.
                           (2001ApJ...563.1075L 2001ApJ...563.1075L)
table7.dat    56     1735  Hyperfine structure line component patterns for
                           159TbII (Z=65).
table8.dat    85      915  Experimental atomic transition probabilities for
                           DyI (Z=66; levels have integral J) and DyII (levels
                           have half integral J) from Wickliffe et al.
                           (2000JQSRT..66..363W 2000JQSRT..66..363W)
table9.dat    63       22  Experimental atomic transition probabilities for
                           HoII (Z=67) arranged by Wavenumber from Lawler et al.
                           (2004ApJ...604..850L 2004ApJ...604..850L)
table10.dat   56      473  Hyperfine structure line component patterns for
                           HoII (Z=67).
table11.dat   61      146  Experimental atomic transition probabilities for
                           TmII (Z=69) from Wickliffe & Lawler
                           (1997JOSAB..14..737W 1997JOSAB..14..737W)
table13.dat   63       19 *Experimental atomic transition probabilities for
                           LuII (Z=71) from odd-parity upper levels organized by
                           increasing wavelength in air.
table14.dat   56      163  Hyperfine structure line component patterns for
                           175LuII (Z=71).
--------------------------------------------------------------------------------
Note on table13.dat: Updated energy i levels from Table 12 are used for
   transitions if available both for the upper and lower levels, otherwise NIST
   (Martin et al., 1978aelr.book.....M 1978aelr.book.....M) energy levels are used. Wavelengths are
   computed using the standard index of air (Edlen, 1953JOSA...43..339E 1953JOSA...43..339E).
--------------------------------------------------------------------------------
See also:
   J/AZh/84/997  : Abundances of Sr, Y, Zr, Ce and Ba (Mashonkina+, 2007)
   J/ApJS/182/80 : Rare earth abundances (Sneden+, 2009)
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
   Bytes Format Units    Label     Explanations
--------------------------------------------------------------------------------
   1-  9  F9.3  0.1nm    lamAir    Wavelength in air in Angstroms
  11- 19  F9.3  cm-1     E1        Upper level energy
  21- 22  A2    ---      p1        Upper level parity
  24- 26  F3.1  ---      J1        Upper level J value
  28- 36  F9.3  cm-1     E0        Lower level energy
  38- 39  A2    ---      p0        Lower level parity
  41- 43  F3.1  ---      J0        Lower level J value
  45- 51  F7.3  10+6/s   Aij       Transition probability
  53- 57  F5.3  10+6/s e_Aij       Total uncertainty in Aij
  59- 63  F5.2  ---      log(gf)   Log of degeneracy times oscillator strength
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table[56].dat table13.dat
--------------------------------------------------------------------------------
   Bytes Format Units    Label     Explanations
--------------------------------------------------------------------------------
   1-  8  F8.2  cm-1     sigma     ? Transition Wavenumber (except for table13)
  10- 18  F9.4  0.1nm    lamAir    Wavelength in air in Angstroms
  20- 28  F9.3  cm-1     E1        Upper level energy
      30  I1    ---      J1        Upper level J value
  32- 40  F9.3  cm-1     E0        Lower level energy
      42  I1    ---      J0        Lower level J value
  44- 50  F7.3  10+6/s   Aij       Transition probability
  52- 57  F6.3  10+6/s e_Aij       Total uncertainty in Aij, this experiment
  59- 63  F5.2  [-]      log(gf)   Log of degeneracy times oscillator strength
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table8.dat
--------------------------------------------------------------------------------
   Bytes Format Units    Label    Explanations
--------------------------------------------------------------------------------
   1-  8  F8.2  cm-1     sigma    Transition Wavenumber
  10- 17  F8.2  0.1nm    lamAir   Wavelength in air in Angstroms
  19- 26  F8.2  cm-1     E1       Upper level energy
  28- 29  A2    ---      p1       Upper level parity
  31- 34  F4.1  ---      J1       Upper level J value
  36- 43  F8.2  cm-1     E0       Lower level energy
  45- 46  A2    ---      p0       Lower level parity
  48- 51  F4.1  ---      J0       Lower level J value
  53- 60  F8.4  10+6/s   AijW     ? Transition probability from Univ. Wisconsin
  62- 63  I2    %      e_AijW     ? Percent total uncertainty in AijW
  65- 69  F5.2  [-]      log(gf)W ? Log of degeneracy times oscillator strength
                                    from Univ. Wisconsin
  71- 76  F6.3  10+6/s   AijN     ? Transition probability from NIST
  78- 79  I2    %      e_AijN     ? Percent total uncertainty in AijN
  81- 85  F5.2  [-]      log(gf)N ? Log of degeneracy times oscillator strength
                                    from NIST
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table9.dat
--------------------------------------------------------------------------------
   Bytes Format Units    Label     Explanations
--------------------------------------------------------------------------------
   1-  8  F8.2  cm-1     sigma     Transition Wavenumber
  10- 16  F7.2  0.1nm    lamAir    Wavelength in air in Angstroms
  18- 25  F8.2  cm-1     E1        Upper level energy
      27  I1    ---      J1        Upper level J value
  29- 35  F7.2  cm-1     E0        Lower level energy
      37  I1    ---      J0        Lower level J value
  39- 44  F6.2  10+6/s   Aij       Transition probability, this experiment
  46- 49  F4.2  10+6/s e_Aij       Total uncertainty in Aij, this experiment
  51- 55  F5.2  [-]      log(gf)   Log of degeneracy times oscillator strength,
                                   this experiment
  57- 61  F5.2  [-]      log(gf)O  ? Log of degeneracy times oscillator
                                   strength, from another source
      63  A1    ---    r_log(gf)O  Note on log(gf)O (1)
--------------------------------------------------------------------------------
Note (1): Notes as follows:
    a = VALD (Vienna Atomic Line Database) as described in Kupka et al.
        (1999POBeo..65..223K 1999POBeo..65..223K) value determined using the method of Magazzu &
        Cowley (1986ApJ...308..254M 1986ApJ...308..254M)
    b = VALD database as described in Kupka et al. (1999POBeo..65..223K 1999POBeo..65..223K) value
        originally from Gorshkov & Komarovskii (1979)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table7.dat table1[04].dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label     Explanations
--------------------------------------------------------------------------------
   1-  9  F9.3  cm-1    sigma     Center-of-Gravity Wavenumber
  11- 19  F9.4  0.1nm   lamAir    Center-of-Gravity Air Wavelength in Angstroms
  21- 24  F4.1  ---     F1        Component upper level F or total angular
                                  momentum
  26- 29  F4.1  ---     F0        Component lower level F or total angular
                                  momentum
  31- 38  F8.5  cm-1    dsigma    Component offset Wavenumber with respect to
                                  Center-of-gravity Wavenumber
  40- 48  F9.6  0.1nm   dlam      Component offset Wavelength with respect to
                                  Center-of-gravity Wavelength
  50- 56  F7.5  ---     Strength  Component strength (1)
--------------------------------------------------------------------------------
Note (1): Normalized to sum to one.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table11.dat
--------------------------------------------------------------------------------
   Bytes Format Units    Label     Explanations
--------------------------------------------------------------------------------
   1-  8  F8.2  cm-1     sigma     Transition Wavenumber
  10- 16  F7.2  0.1nm    lamAir    Wavelength in air in Angstroms
  18- 25  F8.2  cm-1     E1        Upper level energy
  27- 28  A2    ---      p1        Upper level parity
      30  I1    ---      J1        Upper level J value
  32- 39  F8.2  cm-1     E0        Lower level energy
  41- 42  A2    ---      p0        Lower level parity
      44  I1    ---      J0        Lower level J value
  46- 52  F7.3  10+6/s   Aij       Transition probability
  54- 55  I2    %      e_Aij       Percent total uncertainty in Aij
  57- 61  F5.2  [-]      log(gf)   Log of degeneracy times oscillator strength
--------------------------------------------------------------------------------
History:
    From electronic version of the journal
(End)                 Greg Schwarz [AAS], Emmanuelle Perret [CDS]    17-Nov-2009