J/ApJS/182/51 Transition probabilities of rare earth elements (Lawler+, 2009)
Improved laboratory transition probabilities for Ce II, application to the
cerium abundances of the Sun and five r-process-rich, metal-poor
stars, and rare earth lab data summary.
Lawler J.E., Sneden C., Cowan J.J., Ivans I.I., Den Hartog E.A.
<Astrophys. J. Suppl. Ser., 182, 51-79 (2009)>
=2009ApJS..182...51L 2009ApJS..182...51L
ADC_Keywords: Atomic physics
Keywords: atomic data - Galaxy: evolution - nuclear reactions, nucleosynthesis,
abundances - stars: abundances - stars: individual (BD+17 3248,
CS 22892-052, CS 31082-001, HD 115444, HD 221170)
stars: Population II - Sun: abundances
Abstract:
Recent radiative lifetime measurements accurate to ±5% using
laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity
levels of CeII have been combined with new branching fractions
measured using a Fourier transform spectrometer (FTS) to determine
transition probabilities for 921 lines of CeII. This improved
laboratory data set has been used to determine a new solar
photospheric Ce abundance, logε=1.61±0.01 (σ=0.06 from
45 lines), a value in excellent agreement with the recommended
meteoritic abundance, logε=1.61±0.02. Revised Ce abundances
have also been derived for the r-process-rich metal-poor giant stars
BD+17 3248, CS 22892-052, CS 31082-001, HD 115444, and HD 221170.
Between 26 and 40 lines were used for determining the Ce abundance in
these five stars, yielding a small statistical uncertainty of
±0.01dex similar to the solar result. The relative abundances in
the metal-poor stars of Ce and Eu, a nearly pure r-process element in
the Sun, matches r-process-only model predictions for solar system
material. This consistent match with small scatter over a wide range
of stellar metallicities lends support to these predictions of
elemental fractions. A companion paper includes an interpretation of
these new precision abundance results for Ce as well as new abundance
results and interpretation for Pr, Dy, and Tm.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 63 921 Atomic transition probabilities for CeII (Z=58)
organized by increasing wavelength in air
table5.dat 63 84 Experimental atomic transition probabilities for
LaII (Z=57) arranged by Wavenumber from Lawler et al.
(2001ApJ...556..452L 2001ApJ...556..452L)
table6.dat 63 24 Experimental atomic transition probabilities for
EuII (Z=63) arranged by wavenumber from Lawler et al.
(2001ApJ...563.1075L 2001ApJ...563.1075L)
table7.dat 56 1735 Hyperfine structure line component patterns for
159TbII (Z=65).
table8.dat 85 915 Experimental atomic transition probabilities for
DyI (Z=66; levels have integral J) and DyII (levels
have half integral J) from Wickliffe et al.
(2000JQSRT..66..363W 2000JQSRT..66..363W)
table9.dat 63 22 Experimental atomic transition probabilities for
HoII (Z=67) arranged by Wavenumber from Lawler et al.
(2004ApJ...604..850L 2004ApJ...604..850L)
table10.dat 56 473 Hyperfine structure line component patterns for
HoII (Z=67).
table11.dat 61 146 Experimental atomic transition probabilities for
TmII (Z=69) from Wickliffe & Lawler
(1997JOSAB..14..737W 1997JOSAB..14..737W)
table13.dat 63 19 *Experimental atomic transition probabilities for
LuII (Z=71) from odd-parity upper levels organized by
increasing wavelength in air.
table14.dat 56 163 Hyperfine structure line component patterns for
175LuII (Z=71).
--------------------------------------------------------------------------------
Note on table13.dat: Updated energy i levels from Table 12 are used for
transitions if available both for the upper and lower levels, otherwise NIST
(Martin et al., 1978aelr.book.....M 1978aelr.book.....M) energy levels are used. Wavelengths are
computed using the standard index of air (Edlen, 1953JOSA...43..339E 1953JOSA...43..339E).
--------------------------------------------------------------------------------
See also:
J/AZh/84/997 : Abundances of Sr, Y, Zr, Ce and Ba (Mashonkina+, 2007)
J/ApJS/182/80 : Rare earth abundances (Sneden+, 2009)
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 F9.3 0.1nm lamAir Wavelength in air in Angstroms
11- 19 F9.3 cm-1 E1 Upper level energy
21- 22 A2 --- p1 Upper level parity
24- 26 F3.1 --- J1 Upper level J value
28- 36 F9.3 cm-1 E0 Lower level energy
38- 39 A2 --- p0 Lower level parity
41- 43 F3.1 --- J0 Lower level J value
45- 51 F7.3 10+6/s Aij Transition probability
53- 57 F5.3 10+6/s e_Aij Total uncertainty in Aij
59- 63 F5.2 --- log(gf) Log of degeneracy times oscillator strength
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table[56].dat table13.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 F8.2 cm-1 sigma ? Transition Wavenumber (except for table13)
10- 18 F9.4 0.1nm lamAir Wavelength in air in Angstroms
20- 28 F9.3 cm-1 E1 Upper level energy
30 I1 --- J1 Upper level J value
32- 40 F9.3 cm-1 E0 Lower level energy
42 I1 --- J0 Lower level J value
44- 50 F7.3 10+6/s Aij Transition probability
52- 57 F6.3 10+6/s e_Aij Total uncertainty in Aij, this experiment
59- 63 F5.2 [-] log(gf) Log of degeneracy times oscillator strength
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table8.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 F8.2 cm-1 sigma Transition Wavenumber
10- 17 F8.2 0.1nm lamAir Wavelength in air in Angstroms
19- 26 F8.2 cm-1 E1 Upper level energy
28- 29 A2 --- p1 Upper level parity
31- 34 F4.1 --- J1 Upper level J value
36- 43 F8.2 cm-1 E0 Lower level energy
45- 46 A2 --- p0 Lower level parity
48- 51 F4.1 --- J0 Lower level J value
53- 60 F8.4 10+6/s AijW ? Transition probability from Univ. Wisconsin
62- 63 I2 % e_AijW ? Percent total uncertainty in AijW
65- 69 F5.2 [-] log(gf)W ? Log of degeneracy times oscillator strength
from Univ. Wisconsin
71- 76 F6.3 10+6/s AijN ? Transition probability from NIST
78- 79 I2 % e_AijN ? Percent total uncertainty in AijN
81- 85 F5.2 [-] log(gf)N ? Log of degeneracy times oscillator strength
from NIST
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table9.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 F8.2 cm-1 sigma Transition Wavenumber
10- 16 F7.2 0.1nm lamAir Wavelength in air in Angstroms
18- 25 F8.2 cm-1 E1 Upper level energy
27 I1 --- J1 Upper level J value
29- 35 F7.2 cm-1 E0 Lower level energy
37 I1 --- J0 Lower level J value
39- 44 F6.2 10+6/s Aij Transition probability, this experiment
46- 49 F4.2 10+6/s e_Aij Total uncertainty in Aij, this experiment
51- 55 F5.2 [-] log(gf) Log of degeneracy times oscillator strength,
this experiment
57- 61 F5.2 [-] log(gf)O ? Log of degeneracy times oscillator
strength, from another source
63 A1 --- r_log(gf)O Note on log(gf)O (1)
--------------------------------------------------------------------------------
Note (1): Notes as follows:
a = VALD (Vienna Atomic Line Database) as described in Kupka et al.
(1999POBeo..65..223K 1999POBeo..65..223K) value determined using the method of Magazzu &
Cowley (1986ApJ...308..254M 1986ApJ...308..254M)
b = VALD database as described in Kupka et al. (1999POBeo..65..223K 1999POBeo..65..223K) value
originally from Gorshkov & Komarovskii (1979)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table7.dat table1[04].dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 F9.3 cm-1 sigma Center-of-Gravity Wavenumber
11- 19 F9.4 0.1nm lamAir Center-of-Gravity Air Wavelength in Angstroms
21- 24 F4.1 --- F1 Component upper level F or total angular
momentum
26- 29 F4.1 --- F0 Component lower level F or total angular
momentum
31- 38 F8.5 cm-1 dsigma Component offset Wavenumber with respect to
Center-of-gravity Wavenumber
40- 48 F9.6 0.1nm dlam Component offset Wavelength with respect to
Center-of-gravity Wavelength
50- 56 F7.5 --- Strength Component strength (1)
--------------------------------------------------------------------------------
Note (1): Normalized to sum to one.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table11.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 F8.2 cm-1 sigma Transition Wavenumber
10- 16 F7.2 0.1nm lamAir Wavelength in air in Angstroms
18- 25 F8.2 cm-1 E1 Upper level energy
27- 28 A2 --- p1 Upper level parity
30 I1 --- J1 Upper level J value
32- 39 F8.2 cm-1 E0 Lower level energy
41- 42 A2 --- p0 Lower level parity
44 I1 --- J0 Lower level J value
46- 52 F7.3 10+6/s Aij Transition probability
54- 55 I2 % e_Aij Percent total uncertainty in Aij
57- 61 F5.2 [-] log(gf) Log of degeneracy times oscillator strength
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 17-Nov-2009