J/ApJS/206/22      Newly EGOs from GLIMPSE II survey. II. MoC      (Chen+, 2013)

Newly identified extended green objects (EGOs) from the Spitzer GLIMPSE II survey. II. Molecular cloud environments. Chen X., Gan C.-G., Ellingsen S.P., He J.-H., Shen Z.-Q., Titmarsh A. <Astrophys. J. Suppl. Ser., 206, 22 (2013)> =2013ApJS..206...22C 2013ApJS..206...22C
ADC_Keywords: Interstellar medium ; Radio lines ; YSOs Keywords: infrared: ISM - ISM: jets and outflows - radio lines: ISM - stars: formation Abstract: We have undertaken a survey of molecular lines in the 3mm band toward 57 young stellar objects using the Australia Telescope National Facility Mopra 22m radio telescope. The target sources were young stellar objects with active outflows (extended green objects (EGOs)) newly identified from the GLIMPSE II survey. We observe a high detection rate (50%) of broad line wing emission in the HNC and CS thermal lines, which combined with the high detection rate of class I methanol masers toward these sources (reported in Paper I, Cat. J/ApJS/206/9) further demonstrates that the GLIMPSE II EGOs are associated with outflows. The physical and kinematic characteristics derived from the 3mm molecular lines for these newly identified EGOs are consistent with these sources being massive young stellar objects with ongoing outflow activity and rapid accretion. These findings support our previous investigations of the mid-infrared properties of these sources and their association with other star formation tracers (e.g., infrared dark clouds, methanol masers and millimeter dust sources) presented in Paper I. The high detection rate (64%) of the hot core tracer CH3CN reveals that the majority of these new EGOs have evolved to the hot molecular core stage. Comparison of the observed molecular column densities with predictions from hot core chemistry models reveals that the newly identified EGOs from the GLIMPSE II survey are members of the youngest hot core population, with an evolutionary time scale of the order of 103yr. Description: A survey for molecular lines in the 3mm band toward ∼60% of the GLIMPSE II EGO catalog (Paper I, Cat. J/ApJS/206/9) was performed with the Australia Telescope National Facility (ATNF) Mopra 22m radio telescope in 2009 august 9-20. Fifty-five sites, which include fifty-seven of the GLIMPSE II EGOs were observed in the survey (the two EGO-pairs G352.52+0.76(a)/G352.52+0.76(b) and G358.46-0.39(a)/G358.46-0.39(b) were covered simultaneously within a single Mopra observation). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 52 55 Sample parameters table4.dat 67 69 CS line parameters table5.dat 67 74 HNC line parameters table6.dat 129 57 C34S, 13CS and HC3N line parameters from Gaussian fits table7.dat 113 59 CH3OH line parameters from Gaussian fits table8.dat 113 34 CH3CN line parameters from Gaussian fits table9.dat 66 17 CH3CHO line parameters from Gaussian fits table10.dat 103 57 N2H+ line parameters from Gaussian fits table11.dat 119 28 Gaussian fits to CS, HNC and HC3N line wings table12.dat 156 55 Derived parameters for the observed lines table15.dat 62 55 CS and HNC line asymmetry parameters -------------------------------------------------------------------------------- See also: J/ApJS/206/9 : EGOs from Spitzer GLIMPSE II survey. Paper I. (Chen+, 2013) J/ApJS/202/1 : 1mm spectral line survey toward GLIMPSE EGOs (He+, 2012) J/ApJS/196/9 : 95GHz methanol maser survey toward GLIMPSE EGOs (Chen+, 2011) J/ApJ/710/150 : Molecular lines in EGOs (Chen+, 2010) J/ApJ/702/1615 : CH3OH maser survey of EGOs (Cyganowski+, 2009) J/AJ/136/2391 : GLIMPSE Extended Green Objects catalog (Cyganowski+, 2008) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- EGO EGO name (GLLL.ll+B.bb) 14 A1 --- f_EGO [a] Multiple EGOs observed (G1) 16- 17 I2 h RAh [17/18] Hour of right ascension (J2000) (1) 19- 20 I2 min RAm Minute of right ascension (J2000) 22- 25 F4.1 s RAs Second of right ascension (J2000) 27 A1 --- DE- [-] Sign of declination (J2000) (1) 28- 29 I2 deg DEd [20/38] Degree of declination (J2000) (1) 31- 32 I2 arcmin DEm Arcminute of declination (J2000) 34- 35 I2 arcsec DEs Arcsecond of declination (J2000) 37- 40 F4.1 kpc Dist [0.5/11.2] Distance to the source (from Paper I) 42 A1 --- IRDC [Y/N] Association with an IR dark cloud (from Paper I)? 44 A1 --- IImas [Y/N] Association with a class II methanol maser (from Paper I)? 46 A1 --- Imas [YN-] Association with a class I methanol maser (from Paper I)? 48 A1 --- H2O [YN-] Association with a 22GHz H2O maser? 50 A1 --- 8um [Y/N] Association with a Spitzer/IRAC 8um source? 52 A1 --- MSX [Y/N] Association with a MSX 8um source? -------------------------------------------------------------------------------- Note (1): Target position (RA and DEC, respectively) for the observations (also corresponds to the GLIMPSE II EGO catalog position; see Paper I, Cat. J/ApJS/206/9). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table[45].dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- EGO Source name 14- 16 A3 --- f_EGO [ ,a-d] Flag(s) on EGO (1) 19- 24 F6.2 km/s V [-96/154]? Gaussian fit local standard of rest velocity 26- 29 F4.2 km/s e_V ? Uncertainty in V 31- 34 F4.2 km/s dV [1/7.5]? Gaussian fit FWHM line width 36- 39 F4.2 km/s e_dV ? Uncertainty in dV 41- 45 F5.2 K.km/s Int [0.5/35]? Gaussian fit integrated intensity 47- 50 F4.2 K.km/s e_Int ? Uncertainty in Int 52- 55 F4.2 K Tmb [0.3/6.3]? Gaussian fit amplitude (TMB scale) 57- 62 F6.2 km/s Vp [-98/154]? Peak position local standard of rest velocity (2) 64- 67 F4.2 K Tp [0.3/5.4]? Peak position amplitude (2) -------------------------------------------------------------------------------- Note (1): Flag as follows: b = Sources with double-peak profiles. We give two peak positions for the two peaks in the last two columns. c = Sources with multiple velocity components. The first-listed velocity component is considered to be associated with the observed EGO as it has a similar velocity to that of the 95 GHz class I methanol maser emission (see Section 3.2). d = Multiple EGOs were observed simultaneously in the same Mopra beam. G350.52-0.35 included the two EGOs G350.52-0.35(a) and G350.52-0.35(b), and G358.46-0.39 included the two EGOs G358.46-0.39(a) and G358.46-0.39(b). Note (2): The observed peak position which is taken directly from the CS (table 4), HNC (table 5) spectrum (with no fitting) is used to analyze CS (table 4), HNC (table 5) line asymmetry, the uncertainties are assumed to be the one-half the channel width and 1σ noise in TMB, respectively (see Section 4.4.2). Notably for source with no significant difference between the Gaussian fit line and the observed spectral profile, we adopted Gaussian fit values. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- EGO Source name 14- 16 A3 --- f_EGO [ ,a-c] Flag(s) on EGO (1) 18- 23 F6.2 km/s V1 [-96/153.6]? C34S line center local standard of rest velocity (2) 25- 28 F4.2 km/s e_V1 ? Uncertainty in V1 (2) 30- 33 F4.2 km/s dV1 ? C34S FWHM line width (2) 35- 38 F4.2 km/s e_dV1 ? Uncertainty in dV1 (2) 40- 44 F5.2 K.km/s Int1 ? C34S integrated intensity (2) 46- 49 F4.2 K.km/s e_Int1 ? Uncertainty in Int1 (2) 51- 54 F4.2 K Tmb1 ? C34S amplitude (2) 56- 61 F6.2 km/s V2 [-96/41]? 13CS line center local standard of rest velocity (2) 63- 66 F4.2 km/s e_V2 ? Uncertainty in V2 (2) 68- 71 F4.2 km/s dV2 ? 13CS FWHM line width (2) 73- 76 F4.2 km/s e_dV2 ? Uncertainty in dV2 (2) 78- 81 F4.2 K.km/s Int2 ? 13CS integrated intensity (2) 83- 86 F4.2 K.km/s e_Int2 ? Uncertainty in Int2 (2) 88- 91 F4.2 K Tmb2 ? 13CS amplitude (2) 93- 98 F6.2 km/s V3 [-96/40]? HC3N line center local standard of rest velocity (2) 100-103 F4.2 km/s e_V3 ? Uncertainty in V3 (2) 105-108 F4.2 km/s dV3 ? HC3N FWHM line width (2) 110-113 F4.2 km/s e_dV3 ? Uncertainty in dV3 (2) 115-119 F5.2 K.km/s Int3 ? HC3N integrated intensity (2) 121-124 F4.2 K.km/s e_Int3 ? Uncertainty in Int3 (2) 126-129 F4.2 K Tmb3 ? HC3N amplitude (2) -------------------------------------------------------------------------------- Note (1): Flag as follows: a = Sources for which the 13CS and HNC lines were not observed, blank in the table. b = Sources with multiple C34S, 13CS or HC3N velocity components. The first-listed velocity component is considered to be associated with the observed EGOs as it has a similar velocity to that of the 95 GHz class I methanol maser emission (see Section 3.2). c = Multiple EGOs were observed simultaneously in the same Mopra beam. G350.52-0.35 included the two EGOs G350.52-0.35(a) and G350.52-0.35(b), and G358.46-0.39 included the two EGOs G358.46-0.39(a) and G358.46-0.39(b). Note (2): No Gaussian fit parameters are presented for undetected lines in the observations and left blank in the table. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table7.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- EGO Source name 14 A1 --- f_EGO [ab] Flag on EGO (1) 16- 21 F6.2 km/s V [-96/154] Line center local standard of rest velocity (2) 23- 26 F4.2 km/s e_V Uncertainty in V 28- 31 F4.2 km/s dV [0.46/5.96] FWHM line width (2) 33- 36 F4.2 km/s e_dV Uncertainty in dV 38- 42 F5.2 K.km/s Int1 [0.1/14.2]? Integrated intensity of 2-1,2-1-1,1 E transition (3) 44- 47 F4.2 K.km/s e_Int1 ? Uncertainty in Int1 (3) 49- 52 F4.2 K Tmb1 [0.08/2.69]? Amplitude of 2-1,2-1-1,1 E transition (3) 54- 58 F5.2 K.km/s Int2 Integrated intensity of 20,2-10,1 A+ transition 60- 63 F4.2 K.km/s e_Int2 Uncertainty in Int2 65- 68 F4.2 K Tmb2 Amplitude of 20,2-10,1 A+ transition 70- 73 F4.2 K.km/s Int3 ? Integrated intensity of 20,2-10,1 E transition (3) 75- 78 F4.2 K.km/s e_Int3 ? Uncertainty in Int3 (3) 80- 83 F4.2 K Tmb3 ? Amplitude of 20,2-10,1 E transition (3) 85- 88 F4.2 K.km/s Int4 ? Integrated intensity of 21,1-11,0 E transition (3) 90- 93 F4.2 K.km/s e_Int4 ? Uncertainty in Int4 (3) 95- 98 F4.2 K Tmb4 ? Amplitude of 21,1-11,0 E transition (3) 100-103 F4.2 K.km/s Int5 ? Integrated intensity of 21,2-11,1 A+ transition (3) 105-108 F4.2 K.km/s e_Int5 ? Uncertainty in Int5 (3) 110-113 F4.2 K Tmb5 ? Amplitude of 21,2-11,1 A+ transition (3) -------------------------------------------------------------------------------- Note (1): Flag as follows: a = Sources with multiple velocity components. The first-listed velocity component is considered to be associated with the observed EGOs as it has a similar velocity to that of the 95 GHz class I methanol maser emission (see Section 3.2). b = Multiple EGOs were observed simultaneously in the same Mopra beam. G350.52-0.35 included the two EGOs G350.52-0.35(a) and G350.52-0.35(b), and G358.46-0.39 included the two EGOs G358.46-0.39(a) and G358.46-0.39(b). Note (2): Determined from the simultaneous Gaussian fits for all the detected CH3OH lines assuming equal FWHM line width and line center velocity. Note (3): No Gaussian fit parameters are presented for undetected transitions in the observations with a blank. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table8.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- EGO Source name 14 A1 --- f_EGO [a] Multiple EGOs observed (G1) 16- 21 F6.2 km/s V [-95.5/155] Line center local standard of rest velocity (2) 23- 26 F4.2 km/s e_V Uncertainty in V 28- 31 F4.2 km/s dV [1.46/6.18] FWHM line width (2) 33- 36 F4.2 km/s e_dV Uncertainty in dV 38- 42 F5.2 K.km/s Int1 [0.15/4.43] Integrated intensity of 50-40 transition 44- 47 F4.2 K.km/s e_Int1 Uncertainty in Int1 49- 52 F4.2 K Tmb1 [0.05/0.67] Amplitude of 50-40 transition 54- 58 F5.2 K.km/s Int2 ? Integrated intensity of 51-41 transition (3) 60- 63 F4.2 K.km/s e_Int2 ? Uncertainty in Int2 (3) 65- 68 F4.2 K Tmb2 ? Amplitude of 51-41 transition (3) 70- 73 F4.2 K.km/s Int3 ? Integrated intensity of 52-42 transition (3) 75- 78 F4.2 K.km/s e_Int3 ? Uncertainty in Int3 (3) 80- 83 F4.2 K Tmb3 ? Amplitude of 52-42 transition (3) 85- 88 F4.2 K.km/s Int4 ? Integrated intensity of 53-43 transition (3) 90- 93 F4.2 K.km/s e_Int4 ? Uncertainty in Int4 (3) 95- 98 F4.2 K Tmb4 ? Amplitude of 53-43 transition (3) 100-103 F4.2 K.km/s Int5 ? Integrated intensity of 54-44 transition (3) 105-108 F4.2 K.km/s e_Int5 ? Uncertainty in Int5 (3) 110-113 F4.2 K Tmb5 ? Amplitude of 54-44 transition (3) -------------------------------------------------------------------------------- Note (2): Determined from the simultaneous Gaussian fits for all the detected CH3CN lines assuming equal FWHM line width and line center velocity. Note (3): No Gaussian fit parameters are presented for undetected transitions in the observations with a blank. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table9.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- EGO Source name 14 A1 --- f_EGO [a] Multiple EGOs observed (G1) 16- 21 F6.2 km/s V [-96/40] Line center local standard of rest velocity (2) 23- 26 F4.2 km/s e_V Uncertainty in V 28- 31 F4.2 km/s dV [1.94/6.03] FWHM line width (2) 33- 36 F4.2 km/s e_dV Uncertainty in dV 38- 41 F4.2 K.km/s Int1 [0.09/0.81]? Integrated intensity of 50,5-40,4 A++ transition (3) 43- 46 F4.2 K.km/s e_Int1 ? Uncertainty in Int1 (3) 48- 51 F4.2 K Tmb1 [0.03/0.19]? Amplitude of 50,5-40,4 A++ transition (3) 53- 56 F4.2 K.km/s Int2 [0.1/0.6]? Integrated intensity of 50,5-40,4 E transition (3) 58- 61 F4.2 K.km/s e_Int2 ? Uncertainty in Int2 (3) 63- 66 F4.2 K Tmb2 [0.03/0.16]? Amplitude of 50,5-40,4 E transition (3) -------------------------------------------------------------------------------- Note (2): Determined from the simultaneous Gaussian fits for all the detected CH3CN lines assuming equal FWHM line width and line center velocity. Note (3): No Gaussian fit parameters are presented for undetected transitions in the observations with a blank. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table10.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- EGO Source name 14 A1 --- f_EGO [ab] Flag on EGO (1) 16- 21 F6.2 km/s V [-96/154] Line center local standard of rest velocity 23- 26 F4.2 km/s e_V Uncertainty in V 28- 31 F4.2 km/s dV1 [0.76/4.75]? FWHM line width of 10-01 Group 1 transition (2) 33- 36 F4.2 km/s e_dV1 ? Uncertainty in dV1 (2) 38- 41 F4.2 K.km/s Int1 [0.1/5.8]? Integrated intensity of 10-01 Group 1 transition (2) 43- 46 F4.2 K.km/s e_Int1 ? Uncertainty in Int1 (2) 48- 51 F4.2 K Tmb1 [0.03/1.94]? Amplitude of 10-01 Group 1 transition (2) 53- 56 F4.2 km/s dV2 FWHM line width of 12-01 Group 2 transition 58- 61 F4.2 km/s e_dV2 Uncertainty in dV2 63- 67 F5.2 K.km/s Int2 Integrated intensity of 12-01 Group 2 transition 69- 72 F4.2 K.km/s e_Int2 Uncertainty in Int2 74- 77 F4.2 K Tmb2 Amplitude of 12-01 Group 2 transition 79- 82 F4.2 km/s dV3 FWHM line width of 11-01 Group 3 transition 84- 87 F4.2 km/s e_dV3 Uncertainty in dV3 89- 93 F5.2 K.km/s Int3 Integrated intensity of 11-01 Group 3 transition 95- 98 F4.2 K.km/s e_Int3 Uncertainty in Int3 100-103 F4.2 K Tmb3 Amplitude of 11-01 Group 3 transition -------------------------------------------------------------------------------- Note (1): Flag as follows: a = Sources with multiple velocity components. The first-listed velocity component is considered to be associated with the observed EGOs as it has a similar velocity to that of the 95 GHz class I methanol maser emission (see Section 3.2). b = Multiple EGOs were observed simultaneously in the same Mopra beam. G350.52-0.35 included the two EGOs G350.52-0.35(a) and G350.52-0.35(b), and G358.46-0.39 included the two EGOs G358.46-0.39(a) and G358.46-0.39(b). Note (2): No Gaussian fit parameters are presented for the undetected transitions and we marked them with blanks. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table11.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- EGO Source name 14 A1 --- f_EGO [ab] Flag on EGO (1) 16- 21 F6.2 km/s V1 [-98/40]? CS line center local standard of rest velocity (2) 23- 26 F4.2 km/s e_V1 ? Uncertainty in V1 (2) 28- 32 F5.2 km/s dV1 [5/20]? CS FWHM line width (2) 34- 37 F4.2 km/s e_dV1 ? Uncertainty in dV1 (2) 39- 43 F5.2 K.km/s Int1 [0.75/10.94]? CS integrated intensity (2) 45- 48 F4.2 K.km/s e_Int1 ? Uncertainty in Int1 (2) 50 A1 --- f_Int1 CS remark (3) 52- 57 F6.2 km/s V2 [-98/38]? HNC line center local standard of rest velocity (2) 59- 62 F4.2 km/s e_V2 ? Uncertainty in V2 (2) 64- 68 F5.2 km/s dV2 [1.6/13.4]? HNC FWHM line width (2) 70- 73 F4.2 km/s e_dV2 ? Uncertainty in dV2 (2) 75- 78 F4.2 K.km/s Int2 [0.78/8.73]? HNC integrated intensity (2) 80- 83 F4.2 K.km/s e_Int2 ? Uncertainty in Int2 (2) 85 A1 --- f_Int2 HNC remark (3) 87- 92 F6.2 km/s V3 [-35/13]? HC3N line center local standard of rest velocity (2) 94- 97 F4.2 km/s e_V3 ? Uncertainty in V3 (2) 99-102 F4.2 km/s dV3 [4/10]? HC3N FWHM line width (2) 104-107 F4.2 km/s e_dV3 ? Uncertainty in dV3 (2) 109-112 F4.2 K.km/s Int3 [0.68/3.39]? HC3N integrated intensity (2) 114-117 F4.2 K.km/s e_Int3 ? Uncertainty in Int3 (2) 119 A1 --- f_Int3 HC3N remark (3) -------------------------------------------------------------------------------- Note (1): Flag as follows: a = Sources for which the HC3N lines were not observed, left blank in the table. b = Multiple EGOs were observed simultaneously in the same Mopra beam. G358.46-0.39 included the two EGOs G358.46-0.39(a) and G358.46-0.39(b). Note (2): No Gaussian fit parameters are presented for the undetected transitions and we marked them with blanks. Note (3): Flag as follows: D = the line wing emission is from both blue- and redshifted (double) wings; B = the line wing emission is mainly from blueshifted wing; R = the line wing emission is mainly from redshifted wing. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table12.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- EGO Source name 14 A1 --- f_EGO [a] Multiple EGOs observed (G1) 16- 18 F3.1 K Tex1 [3.1/7.7] CS excitation temperature 20- 22 F3.1 K e_Tex1 Uncertainty in Tex1 24 A1 --- f_Tex1 [b] Flag on Tex1 (2) 26- 29 F4.2 --- tau1 [0.07/0.66]? C34S optical depth (3) 31- 34 F4.2 --- e_tau1 ? Uncertainty in tau1 (3) 36- 38 F3.1 10+13/cm2 N1 [0.2/8.1]? C34S beam-averaged column density (3) 40- 42 F3.1 10+13/cm2 e_N1 ? Uncertainty in N1 (3) 44- 47 F4.2 --- tau2 [0.03/0.38]? 13CS optical depth (3) 49- 52 F4.2 --- e_tau2 ? Uncertainty in tau2 (3) 54- 57 F4.1 10+12/cm2 N2 [1.6/27]? 13CS beam-averaged column density (3) 59- 61 F3.1 10+12/cm2 e_N2 ? Uncertainty in N2 (3) 63- 66 F4.1 K Tex2 [2.9/27.3] N2H+ excitation temperature 68- 71 F4.1 K e_Tex2 Uncertainty in Tex2 73 A1 --- f_Tex2 [c] Assumed Tex2 (2) 75- 78 F4.2 --- tau3 [0.01/3.82]? N2H+ optical depth (3) 80- 83 F4.2 --- e_tau3 ? Uncertainty in tau3 (3) 85- 87 F3.1 10+13/cm2 N3 [0.1/8.3]? N2H+ beam-averaged column density (3) 89- 91 F3.1 10+13/cm2 e_N3 ? Uncertainty in N3 (3) 93- 96 F4.1 K Trot4 [3.9/15.5] CH3OH rotational temperature 98-100 F3.1 K e_Trot4 Uncertainty in Trot4 102 A1 --- f_Trot4 [d] Assumed Trot4 (2) 104-107 F4.1 10+14/cm2 N4 [0/22.1] CH3OH beam-averaged column density 109-111 F3.1 10+14/cm2 e_N4 Uncertainty in N4 113-116 F4.2 --- A/E [0.57/2.73]? CH3OH column density ratio (4) 118-121 F4.1 K Trot5 [10.9/76]? CH3CN rotational temperature (3) 123-126 F4.1 K e_Trot5 ? Uncertainty in Trot5 128 A1 --- f_Trot5 [e] Assumed Trot5 (2) 130-133 F4.1 10+12/cm2 N5 [1.6/85]? CH3CN beam-averaged column density (3) 135-137 F3.1 10+12/cm2 e_N5 ? Uncertainty in N5 (3) 139-142 F4.1 10+12/cm2 N6 [2.7/17.2]? CH3CHO beam-averaged column density (3) 144-146 F3.1 10+12/cm2 e_N6 ? Uncertainty in N6 (3) 148-151 F4.1 10+12/cm2 N7 [0.2/21.7]? HC3N beam-averaged column density (3) 153-156 F4.1 10+12/cm2 e_N7 ? Uncertainty in N7 (3) -------------------------------------------------------------------------------- Note (2): Flag as follows: b = CS excitation temperature estimate is influenced by self-absorption or line wing emission (see Section 4.1.1). c = N2H+ column density was determined from assuming an excitation temperature of 12±7 K (see Section 3.3.2). d = CH3OH column density was determined from assuming a rotational temperature of 6.7±2.2 K (see Section 3.3.3). e = CH3CN column density was determined from assuming a rotational temperature of 46.6±23.9 K (see Section 3.3.3). Note (3): No Gaussian fit parameters are presented for the undetected transitions and we marked them with blanks. Lines not observed were also left blank. Note (4): Of A-type to E-type CH3OH (see Section 4.1.3). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table15.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- EGO Source name 14 A1 --- f_EGO [a] Multiple EGOs observed (G1) 16- 20 F5.2 --- dv1 [-0.95/0.72] CS line asymmetry from δv method (5) 22- 25 F4.2 --- e_dv1 Uncertainty in dv1 27- 30 F4.2 --- A1 [0.2/2.7]? CS line asymmetry from TMB(B)/TMB(R) method (6) 32- 35 F4.2 --- e_A1 ? Uncertainty in A1 37 A1 --- p1 [BNR] CS line profile: Blue, Non-asymmetric or Red 39- 43 F5.2 --- dv2 [-0.69/0.8] HNC line asymmetry from δv method 45- 48 F4.2 --- e_dv2 Uncertainty in dv2 50- 53 F4.2 --- A2 [0.2/3.5]? HNC line asymmetry from TMB(B)/TMB(R) method (6) 55- 58 F4.2 --- e_A2 ? Uncertainty in A2 60 A1 --- p2 [BNR] HNC line profile: Blue, Non-asymmetric or Red 62 A1 --- p [BNR] Combined profile (7) -------------------------------------------------------------------------------- Note (5): δv=(vthick-vthin)/Δvthin (where vthick is the peak velocity of the optically thick line; vthin and Δvthin denote the peak velocity and width of the optically thin line, respectively). Using this approach a blue profile is considered to be one for which δv←5σ, while a red profile requires δv>5{sigma=, where σ is the estimated error in δv (Mardones et al. 1997ApJ...489..719M 1997ApJ...489..719M). See section 4.4.2 for further explanations. Note (6): For sources without double peak profiles, the value is blank. Note (7): Combining the profile information from both the CS and HNC lines. If a source shows contrary line profiles (i.e. "B" vs. "R") in the two lines, we mark the combined profile with a blank. If a source shows an asymmetric line profile (i.e. "B" or "R") in one line but a non-asymmetric line profile in another line (i.e. "N"), we list the asymmetric line profile. -------------------------------------------------------------------------------- Global notes: Note (G1): a = Multiple EGOs were observed simultaneously in the same Mopra beam. G350.52-0.35 included the two EGOs G350.52-0.35(a) and G350.52-0.35(b), and G358.46-0.39 included the two EGOs G358.46-0.39(a) and G358.46-0.39(b). -------------------------------------------------------------------------------- History: From electronic version of the journal References: Chen et al. Paper I. 2013ApJS..206....9C 2013ApJS..206....9C Cat. J/ApJS/206/9
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 14-Oct-2013
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line