J/ApJS/211/20 NiI transition probability measurements (Wood+, 2014)
Improved NiI log(gf) values and abundance determinations in the photospheres of
the Sun and metal-poor star HD 84937.
Wood M.P., Lawler J.E., Sneden C., Cowan J.J.
<Astrophys. J. Suppl. Ser., 211, 20 (2014)>
=2014ApJS..211...20W 2014ApJS..211...20W
ADC_Keywords: Atomic physics ; Stars, nearby ; Sun ; Abundances
Keywords: atomic data; methods: laboratory: atomic; stars: abundances;
stars: individual: HD 84937; Sun: abundances
Abstract:
Atomic transition probability measurements for 371 NiI lines in the
UV through near-IR are reported. Branching fractions from data
recorded using a Fourier transform spectrometer and a new echelle
spectrograph are combined with published radiative lifetimes to
determine these transition probabilities. Generally good agreement is
found in comparisons to previously reported NiI transition
probability measurements. Use of the new echelle spectrograph,
independent radiometric calibration methods, and independent data
analysis routines enable a reduction of systematic errors and overall
improvement in transition probability uncertainty over previous
measurements. The new NiI data are applied to high-resolution visible
and UV spectra of the Sun and metal-poor star HD 84937 to derive new,
more accurate Ni abundances. Lines covering a wide range of wavelength
and excitation potential are used to search for non-LTE effects.
Description:
As in much of our previous branching fraction work, this NiI branching
fraction study makes use of archived FTS data from both the 1.0m
Fourier Transform Spectrometer (FTS) previously at the National Solar
Observatory (NSO) on Kitt Peak and the Chelsea Instruments FT500 UV
FTS at Lund University in Sweden. Table 1 lists the 37 FTS spectra
used in our NiI branching fraction study. All NSO spectra, raw
interferograms, and header files are available in the NSO electronic
archives.
The 80 CCD frames of spectra from commercial Ni HCD lamps of the
echelle spectrograph are listed in Table 2.
Objects:
-----------------------------------------------------
RA (ICRS) DE Designation(s)
-----------------------------------------------------
09 48 56.10 +13 44 39.3 HD 84937 = TYC 834-654-1
-----------------------------------------------------
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 127 37 Fourier Transform Spectra of Ni Hollow Cathode
Discharge (HCD) lamps
table2.dat 64 16 Echelle Spectra of commercial Ni HCD lamps
table3.dat 62 371 Atomic transition probabilities for 371 lines of
NiI organized by increasing wavelength in air
table4.dat 29 76 Solar photospheric nickel abundances from
individual NiI lines
table5.dat 25 77 Nickel abundances from individual NiI lines
in HD 84937
table7.dat 59 303 Shifted isotopic wavelengths for 303 lines of
NiI organized by increasing center of gravity
wavelength in air
--------------------------------------------------------------------------------
See also:
VI/72 : Atomic Transition Probabilities, Sc-Ni (NIST 1993)
J/ApJ/738/5 : Effective collision strengths in NiII (Cassidy+, 2011)
J/ApJ/736/87 : Abundances in G-type stars with exoplanets (Kang+, 2011)
J/A+A/513/A55 : Effective collision strengths of NiII (Cassidy+, 2010)
J/ApJS/156/105 : Transitions in L-shell ions of Fe and Ni (Gu+, 2005)
J/A+AS/119/99 : [NiI] + [NiII] transition probabilities (Quinet+, 1996)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- Seq [1/37] Running sequence number (1)
4- 14 A11 "YYYY/MMM/DD" Date Observation date
16- 18 I3 --- Num [1/677] Serial number
20- 33 A14 --- Lamp Lamp type (2)
35- 39 A5 --- Gas Buffer gas
41- 46 F6.1 mA CLamp [0.8/2000] Lamp current
48- 52 I5 cm-1 Wave1 [0/28436] Lower range of wavenumber
53 A1 --- --- [-]
54- 58 I5 cm-1 Wave2 [7811/56873] Upper range of wavenumber
60- 64 F5.3 cm-1 Lim [0.01/0.07] Limit of resolution
66- 67 I2 --- coadd [4/40] Coadds
69- 73 A5 --- Beam Beam splitter
75- 92 A18 --- Filt Filter
94-127 A34 --- Det Detector (3)
--------------------------------------------------------------------------------
Note (1): Spectra with indices 1 through 15 were recorded using the UV
Chelsea Instruments FT500 at Lund University, Sweden. Spectra with
indices 16 through 37 were recorded using the 1.0m FTS on the McMath
telescope at the National Solar Observatory, Kitt Peak, AZ.
Note (2): Lamp types include Commercial sealed HCD lamps typically used in
Atomic Absorption Spectrophotometers for analytical chemistry and
custom water cooled HCD lamps for high current operation.
Note (3): Detector types include 1P28 Photomultiplier Tubes (PMTs), R166
Solar Blind PMTs, R1516 PMTs, Super Blue silicon (Si) Photodiodes
(PDs), Mid Range Si PDs, and indium antimonide (InSb) detectors for
the near-infrared.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 7 A7 --- Seq Running sequence number (38-117)
9- 19 A11 "YYYY/MMM/DD" Date Observation date
21- 34 A14 --- Num Serial numbers (1)
36- 37 A2 --- Gas Buffer gas
39 I1 mA CLamp [1/5] Lamp current
41- 44 I4 0.1nm lam1 [2000/2200] Lower wavelength range in Å
45 A1 --- --- [-]
46- 49 I4 0.1nm lam2 [2800/3900] Upper wavelength range in Å
51- 56 I6 --- Res [125000/250000] Resolving power (2)
58- 59 I2 --- coadd [6/80] Coadds
61- 64 I4 s Exp [60/1200] Exposure time
--------------------------------------------------------------------------------
Note (1): At least three CCD frames are needed to capture a complete echelle
grating order in the UV. Five CCD frames are used to provide
redundancy and a check for lamp drift.
Note (2): Resolving power is adjusted by changing the diameter of the
precision-machined entrance pinholes from 50um (which gives R∼250000)
to 100um (R∼125000).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 F9.4 0.1nm lambda [2121/7789] Wavelength in air in Å
11- 19 F9.3 cm-1 E1 Upper level energy
21- 22 A2 --- P1 [ev/od] Upper level parity (ev:even, od:odd)
24 I1 --- J1 Upper level J value
26- 34 F9.3 cm-1 E0 Lower level energy
36- 37 A2 --- P0 [ev/od] Lower level parity (ev:even, od:odd)
39 I1 --- J0 Lower level J value
41- 48 F8.4 10+6/s A Transition probability
50- 56 F7.4 10+6/s e_A Total uncertainty in TranP
58- 62 F5.2 [-] log(gf) Log of degeneracy times oscillator strength
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table[45].dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 F8.3 0.1nm lambda [2318/7789] Wavelength in air in Å
10- 14 F5.3 eV E0 Lower level energy
16- 20 F5.2 [-] log(gf) Log of degeneracy times oscillator strength
22- 25 F4.2 [-] log(eps) Log of abundance (log(N/H)+12)
27- 29 A3 --- Isot [yes/no ] Isotopic structure used in synthetic
spectra (only for table 4)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table7.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 F9.4 0.1nm lam.c [2121.39/7788.94] Center of gravity air
wavelength in Angstroms
11- 19 F9.3 cm-1 E1 Upper level energy
21- 22 A2 --- P1 [ev/od] Upper level parity (ev:even, od:odd)
24 I1 --- J1 Upper level J value
26- 34 F9.3 cm-1 E0 Lower level energy
36- 37 A2 --- P0 [ev/od] Lower level parity (ev:even, od:odd)
39 I1 --- J0 Lower level J value
41- 49 F9.4 0.1nm lam.58 Air wavelength of 58Ni isotope in Angstroms
51- 59 F9.4 0.1nm lam.60 Air wavelength of 60Ni isotope in Angstroms
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 30-Apr-2014