J/ApJS/215/19 APOKASC catalog of Kepler red giants (Pinsonneault+, 2014)
The APOKASC catalog: an asteroseismic and spectroscopic joint survey of targets
in the Kepler fields.
Pinsonneault M.H., Elsworth Y., Epstein C., Hekker S., Meszaros SZ.,
Chaplin W.J., Johnson J.A., Garcia R.A., Holtzman J., Mathur S.,
Garcia Perez A., Silva Aguirre V., Girardi L., Basu S., Shetrone M.,
Stello D., Allende Prieto C., An D., Beck P., Beers T.C., Bizyaev D.,
Bloemen S., Bovy J., Cunha K., De Ridder J., Frinchaboy P.M.,
Garcia-Hernandez D.A., Gilliland R., Harding P., Hearty F.R., Huber D.,
Ivans I., Kallinger T., Majewski S.R., Metcalfe T.S., Miglio A., Mosser B.,
Muna D., Nidever D.L., Schneider D.P., Serenelli A., Smith V.V., Tayar J.,
Zamora O., Zasowski G.
<Astrophys. J. Suppl. Ser., 215, 19 (2014)>
=2014ApJS..215...19P 2014ApJS..215...19P
ADC_Keywords: Stars, giant ; Abundances ; Stars, masses ;
Effective temperatures ; Surveys
Keywords: catalogs; stars: abundances; stars: fundamental parameters;
stars: oscillations, including pulsations; surveys
Abstract:
We present the first APOKASC catalog of spectroscopic and
asteroseismic properties of 1916 red giants observed in the Kepler
fields. The spectroscopic parameters provided from the Apache Point
Observatory Galactic Evolution Experiment project are complemented
with asteroseismic surface gravities, masses, radii, and mean
densities determined by members of the Kepler Asteroseismology Science
Consortium. We assess both random and systematic sources of error and
include a discussion of sample selection for giants in the Kepler
fields. Total uncertainties in the main catalog properties are of the
order of 80K in Teff, 0.06dex in [M/H], 0.014dex in logg, and 12%
and 5% in mass and radius, respectively; these reflect a combination
of systematic and random errors. Asteroseismic surface gravities are
substantially more precise and accurate than spectroscopic ones, and
we find good agreement between their mean values and the calibrated
spectroscopic surface gravities. There are, however, systematic
underlying trends with Teff and logg. Our effective temperature
scale is between 0 and 200K cooler than that expected from the
infrared flux method, depending on the adopted extinction map, which
provides evidence for a lower value on average than that inferred for
the Kepler Input Catalog (KIC). We find a reasonable correspondence
between the photometric KIC and spectroscopic APOKASC metallicity
scales, with increased dispersion in KIC metallicities as the absolute
metal abundance decreases, and offsets in Teff and logg consistent
with those derived in the literature. We present mean fitting
relations between APOKASC and KIC observables and discuss future
prospects, strengths, and limitations of the catalog data.
Description:
In this paper we present the first release of the joint APOKASC
asteroseismic and spectroscopic survey for targets with both
high-resolution Apache Point Observatory Galactic Evolution Experiment
(APOGEE) spectra analyzed by members of the third Sloan Digital Sky
Survey (SDSS-III) and asteroseismic data obtained by the Kepler
mission and analyzed by members of the Kepler Asteroseismology Science
Consortium (KASC).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 32 673 *Gold standard surface gravities
table3.dat 149 1989 APOKASC catalog basic data
table4.dat 148 1989 *Scale 1 asteroseismic results (uncorrected)
table5.dat 148 1989 *Scale 2 asteroseismic results (corrected)
--------------------------------------------------------------------------------
Note on table2.dat: The candidates of the gold standard sample were
selected to be those with the most complete time coverage; see Hekker et al.
(2012A&A...544A..90H 2012A&A...544A..90H) for a discussion of the criteria. See section 3.3 for
more explanations about this sample.
Note on table4.dat and table5.dat: In Table 4 we present the asteroseismic
properties derived from the uncorrected spectroscopic parameters; we refer
to this set of measurement as Scale 1. Table 5 has an identical format except
that it was derived using the corrected spectroscopic parameters, and we
refer to these measurements as Scale 2. See section 5.
--------------------------------------------------------------------------------
See also:
V/133 : Kepler Input Catalog (Kepler Mission Team, 2009)
VII/233 : The 2MASS Extended sources (IPAC/UMass, 2003-2006)
J/A+A/572/A34 : Pulsating solar-like stars rotation (Garcia+, 2014)
J/ApJS/211/24 : Rotation periods of Kepler MS stars (McQuillan+, 2014)
J/ApJS/211/2 : Revised properties of Q1-16 Kepler targets (Huber+, 2014)
J/ApJS/210/1 : Asteroseismic study of solar-type stars (Chaplin+, 2014)
J/AJ/146/156 : APOGEE M-dwarf survey. I. First year (Deshpande+, 2013)
J/AJ/146/133 : Stellar parameters from SDSS-III APOGEE DR10 (Meszaros+, 2013)
J/ApJ/767/127 : Asteroseismic solutions for 77 Kepler stars (Huber+, 2013)
J/ApJ/765/L41 : Asteroseismic classification of KIC objects (Stello+, 2013)
J/ApJ/749/152 : Asteroseismic analysis of 22 solar-type stars (Mathur+, 2012)
J/A+A/543/A160 : Normalized spectra of 82 Kepler red giants (Thygesen+, 2012)
J/ApJS/199/30 : Effective temperature scale of KIC stars (Pinsonneault+, 2012)
J/A+A/540/A143 : Oscillations of red giants observed by Kepler (Mosser+, 2012)
J/AJ/142/112 : KIC photometric calibration (Brown+, 2011)
J/ApJ/729/L10 : KIC stars properties in NGC 6791 and NGC 6819 (Basu+, 2011)
J/MNRAS/412/1210 : Kepler asteroseismic targets (Molenda-Zakowicz+, 2011)
J/A+A/525/A131 : Solar-like oscillations in Kepler red giants (Hekker+, 2011)
J/A+A/512/A54 : Teff and Fbol from Infrared Flux Method (Casagrande+, 2010)
J/ApJ/718/L97 : Early asteroseismic results from Kepler (Van Grootel+, 2010)
J/AJ/137/4377 : List of SEGUE plate pairs (Yanny+, 2009)
http://www.sdss3.org/surveys/apogee.php : SDSS-III APOGEE home page
http://kasoc.phys.au.dk/ : KASOC (Kepler Asteroseismic Science Operations
Center) home page
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 I8 --- KIC Star number in the Kepler Input Catalog
10- 13 I4 K Teff [4273/5420]?=0 Effective temperature (1)
15- 20 F6.3 [-] [Fe/H] [-1.5/0.6]?=0 Metallicity in the Kepler Input
Catalog (V/133)
22- 26 F5.3 [cm/s2] log(g) [1.4/3.4] Asteroseismic surface gravity
28- 32 F5.3 [cm/s2] e_log(g) [0.007/0.04] Error in the surface gravity
--------------------------------------------------------------------------------
Note (1): Taken from the Pinsonneault+ (2012, J/ApJS/199/30) SDSS calibration.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 I8 --- KIC Star number in the Kepler Input Catalog
10- 26 A17 --- 2MASS Star identifier in the 2MASS catalog
(II/246; JHHMMSSss+DDMMSSs)
28- 34 F7.3 deg RAdeg Right Ascension in decimal degrees (J2000)
36- 41 F6.3 deg DEdeg Declination in decimal degrees (J2000)
43- 48 F6.3 deg GLAT Galactic latitude
50- 55 F6.3 deg GLON Galactic longitude
57- 61 I5 K Teffc [4083/5524]?=-9999 Effective temperature using
KIC extinction (Teff-KICAv) (1)
63- 67 I5 K e_Teffc ?=-9999 Error in Teffc
69- 73 I5 K Teff [4082/5342]?=-9999 Effective temperature
using zero extinction (Teff-ZeroAv) (2)
75- 79 I5 K e_Teff ?=-9999 Error in Teff
81- 85 F5.2 uHz Dnu [0.2/18.2] Large frequency spacing ΔΝ
87- 90 F4.2 uHz e_Dnu Error in Dnu
92- 97 F6.2 uHz numax [1/247] Frequency of maximum power
99-103 F5.2 uHz e_numax Error in numax
105-149 A45 --- Notes Targeting notes
--------------------------------------------------------------------------------
Note (1): Using Gonzalez-Hernandez & Bonifacio (2009, J/A+A/497/497)
calibration, KIC AV.
Note (2): Using Gonzalez-Hernandez & Bonifacio (2009, J/A+A/497/497)
calibration, zero AV.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 I8 --- KIC Kepler ID number
10- 13 I4 K Teff1 [3790/5141] Uncorrected ASPCAP Teff (G1)
15- 17 I3 K e_Teff1 [66/166] Uncertainty in Teff1
19- 23 F5.2 [Sun] [M/H]1 [-2.3/0.7] Uncorrected ASPCAP Metallicity (G1)
25- 28 F4.2 [Sun] e_[M/H]1 [0.04/0.2] Uncertainty in [M/H]
30- 37 F8.2 [Msun] M1 [0.7/3.6]?=-9999 Asteroseismic Mass
39- 46 F8.2 [Msun] E_M1 ?=-9999 Positive uncertainty in M1
48- 55 F8.2 [Msun] e_M1 ?=-9999 Negative uncertainty in M1
57- 64 F8.2 [Rsun] R1 ?=-9999 Asteroseismic radius
66- 73 F8.2 [Rsun] E_R1 ?=-9999 Positive uncertainty in R1
75- 82 F8.2 [Rsun] e_R1 ?=-9999 Negative uncertainty in R1
84- 92 F9.3 [cm/s2] log.g1 ?=-9999 Asteroseismic surface gravity
94-102 F9.3 [cm/s2] E_log.g1 ?=-9999 Positive uncertainty in log.g1
104-112 F9.3 [cm/s2] e_log.g1 ?=-9999 Negative uncertainty in log.g2
114-124 F11.5 [Sun] rho1 [0/0.02]?=-9999 Density relative to the
Sun (G2)
126-136 F11.5 [Sun] E_rho1 ?=-9999 Positive uncertainty in rho1
138-148 F11.5 [Sun] e_rho1 ?=-9999 Negative uncertainty in rho1
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 I8 --- KIC Kepler ID number
10- 13 I4 K Teff2 [3790/5141] Corrected ASPCAP Teff (G1)
15- 17 I3 K e_Teff2 [66/166] Uncertainty in Teff
19- 23 F5.2 [Sun] [M/H]2 [-2.3/0.7] Corrected ASPCAP Metallicity (G1)
25- 28 F4.2 [Sun] e_[M/H]2 [0.04/0.2] Uncertainty in [M/H]
30- 37 F8.2 [Msun] M2 [0.7/3.6]?=-9999 Asteroseismic Mass
39- 46 F8.2 [Msun] E_M2 ?=-9999 Positive uncertainty in M2
48- 55 F8.2 [Msun] e_M2 ?=-9999 Negative uncertainty in M2
57- 64 F8.2 [Rsun] R2 ?=-9999 Asteroseismic radius
66- 73 F8.2 [Rsun] E_R2 ?=-9999 Positive uncertainty in R2
75- 82 F8.2 [Rsun] e_R2 ?=-9999 Negative uncertainty in R2
84- 92 F9.3 [cm/s2] log.g2 ?=-9999 Asteroseismic surface gravity
94-102 F9.3 [cm/s2] E_log.g2 ?=-9999 Positive uncertainty in log.g2
104-112 F9.3 [cm/s2] e_log.g2 ?=-9999 Negative uncertainty in log.g2
114-124 F11.5 [Sun] rho2 [0/0.02]?=-9999 Density relative to the
Sun (G2)
126-136 F11.5 [Sun] E_rho2 ?=-9999 Positive uncertainty in rho2
138-148 F11.5 [Sun] e_rho2 ?=-9999 Negative uncertainty in rho2
--------------------------------------------------------------------------------
Global Notes:
Note (G1): The APOGEE Stellar Parameters and Chemical Abundances Pipeline
(ASPCAP) was employed to infer six atmospheric parameters from the
observed spectra: effective temperature (Teff), metallicity ([M/H]),
surface gravity (logg), carbon ([C/M]), nitrogen ([N/M]), and
α ([α/M]) abundance ratios. See section 3.
Note (G2): To convert density to cgs units, multiply by the solar density,
which for our purposes is 1.4085g/cm3.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 06-Feb-2015