J/ApJS/218/9 Deep XMM-Newton survey of M33 (Williams+, 2015)
A deep XMM-Newton survey of M33: point-source catalog, source detection, and
characterization of overlapping fields.
Williams B.F., Wold B., Haberl F., Garofali K., Blair W.P., Gaetz T.J.,
Kuntz K.D., Long K.S., Pannuti T.G., Pietsch W., Plucinsky P.P.,
Winkler P.F.
<Astrophys. J. Suppl. Ser., 218, 9 (2015)>
=2015ApJS..218....9W 2015ApJS..218....9W
ADC_Keywords: X-ray sources ; Galaxies, nearby ; Surveys ; Cross identifications
Keywords: galaxies: individual: M33; X-rays: binaries; X-rays: stars
Abstract:
We have obtained a deep 8 field XMM-Newton mosaic of M33 covering the
galaxy out to the D25 isophote and beyond to a limiting 0.2-4.5keV
unabsorbed flux of 5x10-16erg/cm2/s (L>4x1034erg/s at the distance
of M33). These data allow complete coverage of the galaxy with high
sensitivity to soft sources such as diffuse hot gas and supernova
remnants (SNRs). Here, we describe the methods we used to identify and
characterize 1296 point sources in the 8 fields. We compare our
resulting source catalog to the literature, note variable sources,
construct hardness ratios, classify soft sources, analyze the source
density profile, and measure the X-ray luminosity function (XLF). As a
result of the large effective area of XMM-Newton below 1keV, the
survey contains many new soft X-ray sources. The radial source density
profile and XLF for the sources suggest that only ∼15% of the 391
bright sources with L>3.6x1035erg/s are likely to be associated with
M33, and more than a third of these are known SNRs. The log(N)-log(S)
distribution, when corrected for background contamination, is a
relatively flat power law with a differential index of 1.5, which
suggests that many of the other M33 sources may be high-mass X-ray
binaries. Finally, we note the discovery of an interesting new
transient X-ray source, which we are unable to classify.
Description:
To produce an M33 catalog, we have used data of several newly observed
XMM-Newton fields in M33 and archival observations of an eighth field
(PI: Pietsch; from 2010-01-07 to 2010-02-24). The observation dates
for the seven new data fields ranged from 2010 July 09 to August 15
and from 2012 January 10 to January 12.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table3.dat 1208 1296 M33 X-ray source catalog
table5.dat 44 343 Variability of matched T11 (Tullmann et al. 2011,
J/ApJS/193/31) sources
--------------------------------------------------------------------------------
See also:
B/xmm : XMM-Newton Observation Log (XMM-Newton Science Operation Center, 2012)
IX/44 : XMM-Newton Serendipitous Source Catalogue 3XMM-DR4 (XMM-SSC, 2013)
J/MNRAS/419/2095 : HMXBs in nearby galaxies (Mineo+, 2012)
J/ApJS/193/31 : M33 Chandra ACIS survey: final catalog (Tullmann+, 2011)
J/ApJS/192/10 : Chandra ACIS survey in 383 nearby galaxies. I. (Liu, 2011)
J/ApJS/187/495 : SNRs in M33 from optical and X-ray (Long+, 2010)
J/A+A/497/635 : XMM-Newton survey in COSMOS field (Cappelluti+, 2009)
J/A+A/493/339 : XMM-Newton serendipitous Survey. V. (Watson+, 2009)
J/ApJ/703/370 : Radio SNRs in nearby galaxies (Chomiuk+, 2009)
J/ApJ/687/471 : Observational comparison of ULXs & XRBs (Berghea+, 2008)
J/ApJS/174/366 : Chandra ACIS survey of M33 (ChaSeM33) (Plucinsky+, 2008)
J/MNRAS/371/1405 : Variables in M33 (Hartman+, 2006)
J/A+A/451/835 : X-ray sources in M31/M33 (Hatzidimitriou+, 2006)
J/AJ/131/2478 : M31 and M33 UBVRI photometry (Massey+, 2006)
J/A+A/448/1247 : XMM-Newton survey of M33 (Misanovic+, 2006)
J/ApJS/161/271 : The X-ray binary population in M33. I (Grimm+, 2005)
J/A+A/426/11 : XMM-Newton survey of M33 (Pietsch+, 2004)
J/A+A/373/438 : X-ray view of M33 after ROSAT (Haberl+, 2001)
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 --- Seq [1/1296] Running sequence number
6- 6 I1 h RAh [1] Hour of Right Ascension (J2000)
8- 9 I2 min RAm [31/36] Minute of Right Ascension (J2000)
11- 15 F5.2 s RAs Second of Right Ascension (J2000)
17 A1 --- DE- [+] Sign of Declination (J2000)
18- 19 I2 deg DEd [30/31] Degree of Declination (J2000)
21- 22 I2 arcmin DEm Arcminute of Declination (J2000)
24- 28 F5.2 arcsec DEs Arcsecond of Declination (J2000)
30- 33 F4.1 arcsec ePos [1.5/11]? Uncertainty in position
35- 42 E8.3 --- det Total 0.2-4.5 keV detection likelihood
44- 51 E8.3 ct Cts Total 0.2-4.5 keV source counts
53- 59 E7.2 ct e_Cts [8/47000] Error in Cts
61- 68 E8.3 ct/s Rate [0.0004/9.2] Total 0.2-4.5keV source rate
70- 76 E7.2 ct/s e_Rate [0.0001/0.9] Error in Rate
78- 85 E8.3 mW/m2 Flux Total 0.2-4.5 keV source flux
87- 93 E7.2 mW/m2 e_Flux Error in Flux
95- 101 A7 --- Flag Flag of detection deficiencies, 0=ok (1)
103- 120 A18 --- ChASeM33 CXC identification ("HHMMSS.ss+DDMMSS.s";
J2000 - or "0") [T11] (2)
122- 124 I3 --- [MPH2006] ?=0 XMM identification [M06] (3)
126- 143 A18 --- 2nd-match Secondary identification (4)
145- 152 A8 --- OType Object type: SNR, star, foreground (5)
154- 161 E8.3 --- L-e0 The 0.2-0.5 keV detection likelihood
163- 170 E8.3 ct C-e0 The 0.2-0.5 keV source counts
172- 178 E7.2 ct e_C-e0 Error in C-e0
180- 187 E8.3 ct/s R-e0 The 0.2-0.5keV rate
189- 195 E7.2 ct/s e_R-e0 Error in Rate
197- 204 E8.3 mW/m2 F-e0 The 0.2-0.5 keV flux
206- 212 E7.2 mW/m2 e_F-e0 Error in F-e0
214- 221 E8.3 --- L-e1 The 0.5-1.0 keV detection likelihood
223- 230 E8.3 ct C-e1 The 0.5-1.0 keV source counts
232- 238 E7.2 ct e_C-e1 Error in C-e1
240- 247 E8.3 ct/s R-e1 The 0.5-1.0 keV rate
249- 255 E7.2 ct/s e_R-e1 Error in R-e1
257- 264 E8.3 mW/m2 F-e1 The 0.5-1.0 keV flux
266- 272 E7.2 mW/m2 e_F-e1 Error in F-e1
274- 281 E8.3 --- L-e2 The 1.0-2.0 keV detection likelihood
283- 290 E8.3 ct C-e2 The 1.0-2.0 keV source counts
292- 298 E7.2 ct e_C-e2 Error in C-e2
300- 307 E8.3 ct/s R-e2 The 1.0-2.0 keV rate
309- 315 E7.2 ct/s e_R-e2 Error in R-e2
317- 324 E8.3 mW/m2 F-e2 The 1.0-2.0 keV flux
326- 332 E7.2 mW/m2 e_F-e2 Error in F-e2
334- 341 E8.3 --- L-e3 The 2.0-4.5 keV detection likelihood
343- 350 E8.3 ct C-e3 The 2.0-4.5 keV source counts
352- 358 E7.2 ct e_C-e3 Error in C-e3
360- 367 E8.3 ct/s R-e3 The 2.0-4.5 keV rate
369- 375 E7.2 ct/s e_R-e3 Error in R-e3
377- 384 E8.3 mW/m2 F-e3 The 2.0-4.5 keV flux
386- 392 E7.2 mW/m2 e_F-e3 Error in F-e3
394- 398 F5.1 s t-EPNe0 ?=-99.9 EPN 0.2-0.5 keV exposure time
400- 407 E8.3 --- L-EPNe0 ?=9.99e-99 EPN 0.2-0.5keV detection
likelihood
409- 416 E8.3 ct C-EPNe0 ?=9.99e-99 EPN 0.2-0.5 keV source counts
418- 424 E7.2 ct e_C-EPNe0 ?=9.9e-99 Error in C-EPNe0
426- 433 E8.3 ct/s R-EPNe0 ?=9.99e-99 EPN 0.2-0.5 keV rate
435- 441 E7.2 ct/s e_R-EPNe0 ?=9.9e-99 Error in R-EPNe0
443- 450 E8.3 mW/m2 F-EPNe0 ?=9.99e-99 EPN 0.2-0.5 keV flux
452- 458 E7.2 mW/m2 e_F-EPNe0 ?=9.9e-99 Error in F-EPNe0
460- 464 F5.1 s t-EPNe1 ?=-99.9 EPN 0.5-1.0 keV exposure time
466- 473 E8.3 --- L-EPNe1 ?=9.99e-99 EPN 0.5-1.0keV detection
likelihood
475- 482 E8.3 ct C-EPNe1 ?=9.99e-99 EPN 0.5-1.0 keV source counts
484- 490 E7.2 ct e_C-EPNe1 ?=9.9e-99 Error in C-EPNe1
492- 499 E8.3 ct/s R-EPNe1 ?=9.99e-99 EPN 0.5-1.0 keV rate
501- 507 E7.2 ct/s e_R-EPNe1 ?=9.9e-99 Error in R-EPNe1
509- 516 E8.3 mW/m2 F-EPNe1 ?=9.99e-99 EPN 0.5-1.0 keV flux
518- 524 E7.2 mW/m2 e_F-EPNe1 ?=9.9e-99 Error in F-EPNe1
526- 530 F5.1 s t-EPNe2 ?=-99.9 EPN 1.0-2.0 keV exposure time
532- 539 E8.3 --- L-EPNe2 ?=9.99e-99 EPN 1.0-2.0keV detection
likelihood
541- 548 E8.3 ct C-EPNe2 ?=9.99e-99 EPN 1.0-2.0keV source counts
550- 556 E7.2 ct e_C-EPNe2 ?=9.9e-99 Error in C-EPNe2
558- 565 E8.3 ct/s R-EPNe2 ?=9.99e-99 EPN 1.0-2.0 keV Rate
567- 573 E7.2 ct/s e_R-EPNe2 ?=9.9e-99 Error in R-EPNe2
575- 582 E8.3 mW/m2 F-EPNe2 ?=9.99e-99 EPN 1.0-2.0 keV Flux
584- 590 E7.2 mW/m2 e_F-EPNe2 ?=9.9e-99 Error in F-EPNe2
592- 596 F5.1 s t-EPNe3 ?=-99.9 EPN 2.0-4.5 keV exposure time
598- 605 E8.3 --- L-EPNe3 ?=9.99e-99 EPN 2.0-4.5 keV detection
likelihood
607- 614 E8.3 ct C-EPNe3 ?=9.99e-99 EPN 2.0-4.5 keV source counts
616- 622 E7.2 ct e_C-EPNe3 ?=9.9e-99 Error in C-EPNe3
624- 631 E8.3 ct/s R-EPNe3 ?=9.99e-99 EPN 2.0-4.5 keV rate
633- 639 E7.2 ct/s e_R-EPNe3 ?=9.9e-99 Error in C-EPNe3
641- 648 E8.3 mW/m2 F-EPNe3 ?=9.99e-99 EPN 2.0-4.5 keV flux
650- 656 E7.2 mW/m2 e_F-EPNe3 ?=9.9e-99 Error in C-EPNe3
658- 662 F5.1 s t-MOS1e0 ?=-99.9 MOS1 0.2-0.5 keV exposure time
664- 671 E8.3 --- L-MOS1e0 ?=9.99e-99 MOS1 0.2-0.5 keV detection
likelihood
673- 680 E8.3 ct C-MOS1e0 ?=9.99e-99 MOS1 0.2-0.5 keV source counts
682- 688 E7.2 ct e_C-MOS1e0 ?=9.9e-99 Error in C-MOS1e0
690- 697 E8.3 ct/s R-MOS1e0 ?=9.99e-99 MOS1 0.2-0.5 keV rate
699- 705 E7.2 ct/s e_R-MOS1e0 ?=9.9e-99 Error in R-MOS1e0
707- 714 E8.3 mW/m2 F-MOS1e0 ?=9.99e-99 MOS1 0.2-0.5 keV flux
716- 722 E7.2 mW/m2 e_F-MOS1e0 ?=9.9e-99 Error in F-MOS1e0
724- 728 F5.1 s t-MOS1e1 ?=-99.9 MOS1 0.5-1.0 keV exposure time
730- 737 E8.3 --- L-MOS1e1 ?=9.99e-99 MOS1 0.5-1.0 keV detection
likelihood
739- 746 E8.3 ct C-MOS1e1 ?=9.99e-99 MOS1 0.5-1.0 keV source counts
748- 754 E7.2 ct e_C-MOS1e1 ?=9.9e-99 Error in C-MOS1e1
756- 763 E8.3 ct/s R-MOS1e1 ?=9.99e-99 MOS1 0.5-1.0 keV rate
765- 771 E7.2 ct/s e_R-MOS1e1 ?=9.9e-99 Error in R-MOS1e1
773- 780 E8.3 mW/m2 F-MOS1e1 ?=9.99e-99 MOS1 0.5-1.0 keV flux
782- 788 E7.2 mW/m2 e_F-MOS1e1 ?=9.9e-99 Error in F-MOS1e1
790- 794 F5.1 s t-MOS1e2 ?=-99.9 MOS1 1.0-2.0 keV exposure time
796- 803 E8.3 --- L-MOS1e2 ?=9.99e-99 MOS1 1.0-2.0 keV detection
likelihood
805- 812 E8.3 ct C-MOS1e2 ?=9.99e-99 MOS1 1.0-2.0 keV source counts
814- 820 E7.2 ct e_C-MOS1e2 ?=9.9e-99 Error in C-MOS1e2
822- 829 E8.3 ct/s R-MOS1e2 ?=9.99e-99 MOS1 1.0-2.0 keV rate
831- 837 E7.2 ct/s e_R-MOS1e2 ?=9.9e-99 Error in R-MOS1e2
839- 846 E8.3 mW/m2 F-MOS1e2 ?=9.99e-99 MOS1 1.0-2.0 keV flux
848- 854 E7.2 mW/m2 e_F-MOS1e2 ?=9.9e-99 Error in F-MOS1e2
856- 860 F5.1 s t-MOS1e3 ?=-99.9 MOS1 2.0-4.5 keV exposure time
862- 869 E8.3 --- L-MOS1e3 ?=9.99e-99 MOS1 2.0-4.5 keV detection
likelihood
871- 878 E8.3 ct C-MOS1e3 ?=9.99e-99 MOS1 2.0-4.5 keV source counts
880- 886 E7.2 ct e_C-MOS1e3 ?=9.9e-99 Error in C-MOS1e3
888- 895 E8.3 ct/s R-MOS1e3 ?=9.99e-99 MOS1 2.0-4.5 keV rate
897- 903 E7.2 ct/s e_R-MOS1e3 ?=9.9e-99 Error in R-MOS1e3
905- 912 E8.3 mW/m2 F-MOS1e3 ?=9.99e-99 MOS1 2.0-4.5 keV flux
914- 920 E7.2 mW/m2 e_F-MOS1e3 ?=9.9e-99 Error in F-MOS1e3
922- 926 F5.1 s t-MOS2e0 ?=-99.9 MOS2 0.2-0.5 keV exposure time
928- 935 E8.3 --- L-MOS2e0 ?=9.99e-99 MOS2 0.2-0.5 keV detection
likelihood
937- 944 E8.3 ct C-MOS2e0 ?=9.99e-99 MOS2 0.2-0.5 keV source counts
946- 952 E7.2 ct e_C-MOS2e0 ?=9.9e-99 Error in C-MOS2e0
954- 961 E8.3 ct/s R-MOS2e0 ?=9.99e-99 MOS2 0.2-0.5 keV rate
963- 969 E7.2 ct/s e_R-MOS2e0 ?=9.9e-99 Error in R-MOS2e0
971- 978 E8.3 mW/m2 F-MOS2e0 ?=9.99e-99 MOS2 0.2-0.5 keV flux
980- 986 E7.2 mW/m2 e_F-MOS2e0 ?=9.9e-99 Error in F-MOS2e0
988- 992 F5.1 s t-MOS2e1 ?=-99.9 MOS2 0.5-1.0 keV exposure time
994-1001 E8.3 --- L-MOS2e1 ?=9.99e-99 MOS2 0.5-1.0 keV detection
likelihood
1003-1010 E8.3 ct C-MOS2e1 ?=9.99e-99 MOS2 0.5-1.0 keV source counts
1012-1018 E7.2 ct e_C-MOS2e1 ?=9.9e-99 Error in C-MOS2e1
1020-1027 E8.3 ct/s R-MOS2e1 ?=9.99e-99 MOS2 0.5-1.0 keV rate
1029-1035 E7.2 ct/s e_R-MOS2e1 ?=9.9e-99 Error in R-MOS2e1
1037-1044 E8.3 mW/m2 F-MOS2e1 ?=9.99e-99 MOS2 0.5-1.0 keV flux
1046-1052 E7.2 mW/m2 e_F-MOS2e1 ?=9.9e-99 Error in F-MOS2e1
1054-1058 F5.1 s t-MOS2e2 ?=-99.9 MOS2 1.0-2.0 keV exposure time
1060-1067 E8.3 --- L-MOS2e2 ?=9.99e-99 MOS2 1.0-2.0 keV detection
likelihood
1069-1076 E8.3 ct C-MOS2e2 ?=9.99e-99 MOS2 1.0-2.0 keV source counts
1078-1084 E7.2 ct e_C-MOS2e2 ?=9.9e-99 Error in C-MOS2e2
1086-1093 E8.3 ct/s R-MOS2e2 ?=9.99e-99 MOS2 1.0-2.0 keV rate
1095-1101 E7.2 ct/s e_R-MOS2e2 ?=9.9e-99 Error in C-MOS2e2
1103-1110 E8.3 mW/m2 F-MOS2e2 ?=9.99e-99 MOS2 1.0-2.0 keV flux
1112-1118 E7.2 mW/m2 e_F-MOS2e2 ?=9.9e-99 Error in C-MOS2e2
1120-1124 F5.1 s t-MOS2e3 ?=-99.9 MOS2 2.0-4.5 keV exposure time
1126-1133 E8.3 --- L-MOS2e3 ?=9.99e-99 MOS2 2.0-4.5 keV detection
likelihood
1135-1142 E8.3 ct C-MOS2e3 ?=9.99e-99 MOS2 2.0-4.5 keV source counts
1144-1150 E7.2 ct e_C-MOS2e3 ?=9.9e-99 Error in C-MOS2e3
1152-1159 E8.3 ct/s R-MOS2e3 ?=9.99e-99 MOS2 2.0-4.5 keV rate
1161-1167 E7.2 ct/s e_R-MOS2e3 ?=9.9e-99 Error in C-MOS2e3
1169-1176 E8.3 mW/m2 F-MOS2e3 ?=9.99e-99 MOS2 2.0-4.5 keV flux
1178-1184 E7.2 mW/m2 e_F-MOS2e3 ?=9.9e-99 Error in C-MOS2e3
1186-1190 F5.2 --- HR1 [-1/1] Hardness ratio 1 from fluxes (6)
1192-1196 F5.2 --- HR2 [-1/1] Hardness ratio 2 from fluxes (7)
1198-1202 F5.2 --- HR1C [-1/1] Hardness ratio 1 from counts (8)
1204-1208 F5.2 --- HR2C [-1/1] Hardness ratio 2 from counts (9)
--------------------------------------------------------------------------------
Note (1): Flag indicating any deficiencies with the detection or
characterization as follows:
0 = no problems (890 sources)
ip = few hot pixels in an image (27 sources)
is = associated streak from a nearby bright source (29 sources)
m = high detection likelihood (DL) in one MOS camera but not the other MOS
camera or the PN (138 sources)
pn = much higher DL in the 0.2-0.5keV PN data than in any other
band camera (35 sources). Such sources are likely to be spurious
unless they have a match in another survey.
s = source that was not measured in all 3 cameras (167 sources). In these
cases, the total measurements are repeats of the measurements from the
camera that detected the source (for single camera detections) or
weighted mean measurements from the two cameras that detected the source.
These sources are not likely spurious, but their combined measurements
were not performed by emldetect.
t = sources with 0.2-4.5keV source counts that are more than a factor of
2 different from the sum of the source counts measured in the individual
band cameras (suggesting a problem with the merged measurement), or with
total counts in an individual band more than a factor of 2 different
from the sum of the source counts measured in the individual cameras for
that band, likely due to a limitation of the combining algorithm. Thus,
for the 45 t-flag cases, the sources themselves are not spurious, but
the total combined measurements are not as reliable. Thus, we do not use
the combined totals for analysis here. We only analyze the individual
band (or band camera) measurements, as emldetect produced inconsistent
results in the stack of all band camera data at these locations.
Note (2): Matching Tullmann et al. 2011 (T11; J/ApJS/193/31;
<ChASeM33 JHHMMSS.ss+DDMMSS.s> in Simbad) source (see Section 4.3).
Note (3): Matching Misanovic et al. 2006 (M06; J/A+A/448/1247;
<[MPH2006] NNN> in Simbad) source (see Section 4.3).
Note (4): Secondary matched source, if a second T11 source was matched
(indicating a blend in our data).
Note (5): The source type if known. This column indicates sources that are
known SNRs or foreground stars (fgStar) based on previous studies
or our own comparisons with optical data (classifications marked
with <> are preliminary).
Note (6): From Flux, upper limits for non-detections,
(e2-(e0+e1))/(e0+e1+e2+e3); with e0=0.2-0.5keV, e1=0.5-1keV,
e2=1-2keV and e3=2-4.5keV.
Note (7): From Flux, upper limits for non-detections, (e3-e2)/(e0+e1+e2+e3);
with e0=0.2-0.5keV, e1=0.5-1keV, e2=1-2keV and e3=2-4.5keV.
Note (8): From Counts, (e1-e0)/(e1+e0); with e0=0.2-0.5keV, e1=0.5-1keV.
Note (9): From Counts, (e2-e1)/(e2+e1); with e0=0.2-0.5keV, e2=1-2keV.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 --- Seq [177/1188] Source number
6- 13 E8.3 mW/m2 XMM XMM 0.5-2.0keV flux (ergs/s/cm2)
15- 23 E9.3 mW/m2 T11 T11 0.5-2.0keV flux (ergs/s/cm2)
25- 33 E9.3 mW/m2 RT11 Revised T11 0.5-2.0keV flux (ergs/s/cm2)
35- 39 F5.2 --- Sigma [0/79.5] T11 detection σ value (1)
41- 44 F4.2 --- RSigma [0/9.1] T11 revised detection σ value (1)
--------------------------------------------------------------------------------
Note (1): We calculated the variability significance between the matched
sources before accounting for any systematic uncertainty (σ), as
well as the variability significance after adding in quadrature a 10%
systematic uncertainty to all measured fluxes (revised σ).
See section 4.4.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Greg Schwarz [AAS], Emmanuelle Perret [CDS] 08-Jul-2015