J/ApJS/229/32 CANDELS: multiwavelength catalogs in the EGS (Stefanon+, 2017)
CANDELS multi-wavelength catalogs: source identification and photometry in the
CANDELS Extended Groth Strip.
Stefanon M., Yan H., Mobasher B., Barro G., Donley J.L., Fontana A.,
Hemmati S., Koekemoer A.M., Lee B., Lee S.-K., Nayyeri H., Peth M.,
Pforr J., Salvato M., Wiklind T., Wuyts S., Ashby M.L.N., Castellano M.,
Conselice C.J., Cooper M.C., Cooray A.R., Dolch T., Ferguson H.,
Galametz A., Giavalisco M., Guo Y., Willner S.P., Dickinson M.E.,
Faber S.M., Fazio G.G., Gardner J.P., Gawiser E., Grazian A., Grogin N.A.,
Kocevski D., Koo D.C., Lee K.-S., Lucas R.A., McGrath E.J., Nandra K.,
Newman J.A., Van Der Wel A.
<Astrophys. J. Suppl. Ser., 229, 32-32 (2017)>
=2017ApJS..229...32S 2017ApJS..229...32S (SIMBAD/NED BibCode)
ADC_Keywords: Photometry, ugriz ; Photometry, infrared ; Redshifts
Keywords: catalogs; galaxies: evolution; galaxies: photometry;
methods: data analysis; techniques: photometric
Abstract:
We present a 0.4-8µm multi-wavelength photometric catalog in the
Extended Groth Strip (EGS) field. This catalog is built on the Hubble
Space Telescope (HST) WFC3 and ACS data from the Cosmic Assembly
Near-infrared Deep Extragalactic Legacy Survey (CANDELS), and it
incorporates the existing HST data from the All-wavelength Extended
Groth strip International Survey (AEGIS) and the 3D-HST program. The
catalog is based on detections in the F160W band reaching a depth of
F160W=26.62 AB (90% completeness, point sources). It includes the
photometry for 41457 objects over an area of ∼206arcmin2 in the
following bands: HST/ACS F606W and F814W; HST WFC3 F125W, F140W, and
F160W; Canada-France-Hawaii Telescope (CFHT)/Megacam u*, g' , r', i'
and z'; CFHT/WIRCAM J, H, and KS; Mayall/NEWFIRM J1, J2, J3, H1, H2,
and K; Spitzer IRAC 3.6, 4.5, 5.8, and 8.0µm. We are also releasing
value-added catalogs that provide robust photometric redshifts and
stellar mass measurements.
Description:
The CANDELS EGS field is centered at RAJ2000=14:17:00 and
DEJ2000=+52:30:00. The AEGIS project provided deep HST/ACS imaging
data in the F606W and F814W bands to 5σ depths of 28.7 and
28.1mag, respectively. The CANDELS survey adds deep HST WFC3 F125W and
F160W coverage, and increases the depth of the ACS F606W and F814W
mosaics with new data from parallel observations. The WFC3 images were
mostly obtained by the CANDELS program in Cycles 18 and 20. A detailed
description of HST data acquisition and reduction is presented by
Grogin+ (2011ApJS..197...35G 2011ApJS..197...35G) and Koekemoer+ (2011ApJS..197...36K 2011ApJS..197...36K).
The multi-wavelength photometric catalog presented in this work is
assembled using data spanning from 0.4 to 8um, taken by six different
instruments. Specifically, the CANDELS EGS photometric catalog is
built using the data from CFHT/MegaCam, NEWFIRM/NEWFIRM Medium-Band
Survey (NMBS), CFHT/WIRCam, HST/ACS, HST/WFC3, and Spitzer/IRAC.
We included the spectroscopic redshifts from the DEEP2+3 Surveys
(Coil+ 2004ApJ...609..525C 2004ApJ...609..525C; Willner+ 2006, J/AJ/132/2159;
Cooper+ 2011, J/ApJS/193/14, 2012MNRAS.419.3018C 2012MNRAS.419.3018C;
Newman+ 2013ApJS..208....5N 2013ApJS..208....5N), which were spectroscopic surveys
targeting galaxies brighter than R=24.1mag. Observations were carried
out using the DEIMOS spectrograph on Keck II with a resolution of
R∼5000 at the central wavelength of 7800Å.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table6.dat 841 41457 Photometric catalog
table7.dat 93 41457 Photometric redshift catalog
table8.dat 275 41457 Stellar mass catalog
table9.dat 883 41457 Physical parameters catalog
--------------------------------------------------------------------------------
See also:
III/268 : DEEP2 Redshift Survey, Data Release 4 (Matthews+ 2013)
II/301 : The DEEP2-DR1 Photometric Catalog (Coil+ 2004)
II/261 : GOODS initial results (Giavalisco+, 2004)
J/ApJS/228/7 : Multi-wavelength data in CANDELS COSMOS field (Nayyeri+, 2017)
J/ApJS/225/27 : 3D-HST Survey: grism spectra master catalog (Momcheva+, 2016)
J/ApJS/220/10 : AEGIS-X Deep survey of EGS (AEGIS-XD) (Nandra+, 2015)
J/ApJ/810/71 : UV mag of candidate galaxies at 3~<z~<8.5 (Finkelstein+, 2015)
J/ApJS/218/33 : Spitzer-CANDELS catalog within 5 deep fields (Ashby+, 2015)
J/ApJ/803/34 : z∼4-10 galaxies from HST legacy fields (Bouwens+, 2015)
J/ApJ/801/97 : GOODS-S+UDS stellar masses from CANDELS (Santini+, 2015)
J/ApJ/796/60 : ECDFS galaxies phot. redshifts + counterparts (Hsu+, 2014)
J/ApJ/793/101 : CANDELS z∼2 galaxy properties (Trump+, 2014)
J/ApJS/214/24 : 3D-HST+CANDELS catalog (Skelton+, 2014)
J/ApJS/212/18 : An atlas of UV-to-MIR galaxy SEDs (Brown+, 2014)
J/ApJS/207/24 : GOODS-S CANDELS multiwavelength catalog (Guo+, 2013)
J/ApJ/771/85 : Dynamical masses of z∼2 quiescent gal. (van de Sande+, 2013)
J/ApJS/206/10 : CANDELS multiwavelength catalog (Galametz+, 2013)
J/ApJS/206/8 : COSMOS/UltraVISTA Ks-selected catalogs v4.1 (Muzzin+, 2013)
J/ApJ/769/80 : Spitzer/IRAC observations of five deep fields (Ashby+, 2013)
J/ApJ/751/50 : Galaxy groups from DEEP2 Redshift Survey (Gerke+ 2012)
J/A+A/532/A90 : PACS Evolutionary Probe (PEP-DR1) catalogs (Lutz+, 2011)
J/ApJ/735/86 : NEWFIRM MBS: photometric catalogs (Whitaker+, 2011)
J/ApJS/193/30 : UV-to-FIR analysis of sources in the EGS. II. (Barro+, 2011)
J/ApJS/193/14 : DEEP3 Galaxy Redshift Survey: GOODS-N field (Cooper+, 2011)
J/ApJS/193/13 : Spitzer/IRAC sources in the EGS I. SEDs (Barro+, 2011)
J/ApJS/189/270 : MUSYC optical imaging in ECDF-S (Cardamone+, 2010)
J/MNRAS/393/1275 : STAGES master catalog (Gray+, 2009)
J/ApJS/180/102 : AEGIS-X: Chandra deep survey (Laird+, 2009)
J/ApJS/177/431 : Mid-IR sources in EGS (Barmby+, 2008)
J/ApJ/675/234 : Stellar mass functions for gal. 0<z<4 (Perez-Gonzalez+, 2008)
J/ApJS/174/136 : GEMS survey data and catalog (Caldwell+, 2008)
J/AJ/132/2159 : IRAC counterparts of 6cm galaxies in EGS (Willner+, 2006)
J/A+A/449/951 : GOODS-MUSIC sample: multicolour catalog (Grazian+, 2006)
J/MNRAS/356/568 : Deep Chandra survey of the Groth Strip (Nandra+, 2005)
J/AJ/125/1107 : Ultra-deep near-IR observation in HDF-S (Labbe+, 2003)
J/ApJ/513/34 : HDF photometric redshifts catalog (Fernandez-Soto+, 1999)
http://candels.ucolick.org/ : CANDELS home page
http://www.mpe.mpg.de/XraySurveys/AEGIS-X/ : AEGIS-X home page
http://3dhst.research.yale.edu/Data.php : 3D-HST home page
http://deep.ps.uci.edu/deep3/home.html : DEEP3 galaxy redshift survey
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 --- Seq Sequential identifier number
(<[SYM2017] NNNNN> in Simbad) (1)
7- 24 A18 --- --- [CANDELSEGSF160W_]
25- 42 A18 --- Name IAU designation
(
in Simbad)
44- 53 F10.6 deg RAdeg Right Ascension (J2000) (2)
55- 63 F9.6 deg DEdeg Declination (J2000) (2)
65- 74 F10.6 deg RALdeg L08 Right Ascension (J2000) (3)
76- 84 F9.6 deg DELdeg L08 Declination (J2000) (3)
86- 87 I2 --- Flag [0/11]? Quality flag (0=good) (4)
89- 92 F4.2 --- S/G SExtractor CLASS_STAR parameter
from F160W mosaic (0=galaxy)
94-103 E10.3 uJy ufluxC [-0.5/3906] CFHT/MegaCam u* band flux density
105-113 E9.3 uJy e_ufluxC ?=-99 Uncertainty in ufluxC (5)
115-124 E10.3 uJy gfluxC [-0.9/3235] CFHT/MegaCam g' band flux density
126-134 E9.3 uJy e_gfluxC ?=-99 Uncertainty in gfluxC (5)
136-145 E10.3 uJy rfluxC [-0.8/3004] CFHT/MegaCam r' band flux density
147-155 E9.3 uJy e_rfluxC ?=-99 Uncertainty in rfluxC (5)
157-166 E10.3 uJy ifluxC [-0.9/2058] CFHT/MegaCam i' band flux density
168-176 E9.3 uJy e_ifluxC ?=-99 Uncertainty in ifluxC (5)
178-187 E10.3 uJy zfluxC [-3.2/6484] CFHT/MegaCam z' band flux density
189-197 E9.3 uJy e_zfluxC ?=-99 Uncertainty in zfluxC (5)
199-208 E10.3 uJy F606W [-1.3/1016]?=-99 HST/ACS F606W band flux density
210-219 E10.3 uJy e_F606W ?=-99 Uncertainty in F606Wflux (5)
221-230 E10.3 uJy F814W [-1.5/1744]?=-99 HST/ACS F814W band flux density
232-241 E10.3 uJy e_F814W ?=-99 Uncertainty in F814Wflux (5)
243-252 E10.3 uJy F125W [-1.2/2891]?=-99 HST/WFC3 F125W band
flux density
254-263 E10.3 uJy e_F125W ?=-99 Uncertainty in F125Wflux (5)
265-274 E10.3 uJy F140W [-13.1/3181]?=-99 HST/WFC3 F140W band
flux density
276-285 E10.3 uJy e_F140W ?=-99 Uncertainty in F140Wflux (5)
287-296 E10.3 uJy F160W [-1.3/38710]?=-99 HST/WFC3 F160W band
flux density
298-307 E10.3 uJy e_F160W ?=-99 Uncertainty in F160Wflux (5)
309-318 E10.3 uJy JfluxW [-2.8/13430] CFHT/WIRCAM J band flux density
320-328 E9.3 uJy e_JfluxW ?=-99 Uncertainty in JfluxW (5)
330-339 E10.3 uJy HfluxW [-6.7/22490] CFHT/WIRCAM H band flux density
341-349 E9.3 uJy e_HfluxW ?=-99 Uncertainty in HfluxW (5)
351-360 E10.3 uJy KfluxW [-2.6/15020] CFHT/WIRCAM Ks band flux density
362-370 E9.3 uJy e_KfluxW ?=-99 Uncertainty in KfluxW (5)
372-381 E10.3 uJy J1flux [-31960/13750]?=-99 NEWFIRM J1 band flux density
383-392 E10.3 uJy e_J1flux ?=-99 Uncertainty in J1flux (5)
394-403 E10.3 uJy J2flux [-3863/11750]?=-99 NEWFIRM J2 band flux density
405-414 E10.3 uJy e_J2flux ?=-99 Uncertainty in J2flux (5)
416-425 E10.3 uJy J3flux [-7181/9168]?=-99 NEWFIRM J3 band flux density
427-436 E10.3 uJy e_J3flux ?=-99 Uncertainty in J3flux (5)
438-447 E10.3 uJy H1flux [-8008/80980]?=-99 NEWFIRM H1 band flux density
449-458 E10.3 uJy e_H1flux ?=-99 Uncertainty in H1flux (5)
460-469 E10.3 uJy H2flux [-6297/16840]?=-99 NEWFIRM H2 band flux density
471-480 E10.3 uJy e_H2flux ?=-99 Uncertainty in H2flux (5)
482-491 E10.3 uJy Kflux [-8047/21860]?=-99 NEWFIRM K band flux density
493-502 E10.3 uJy e_Kflux ?=-99 Uncertainty in Kflux (5)
504-513 E10.3 uJy 3.6flux [-16110/19490]?=-99 Spitzer/IRAC 3.6um band
flux density
515-524 E10.3 uJy e_3.6flux ?=-99 Uncertainty in 3.6flux (5)
526-535 E10.3 uJy 4.5flux [-17480/19790]?=-99 Spitzer/IRAC 4.5um band
flux density
537-546 E10.3 uJy e_4.5flux ?=-99 Uncertainty in 4.5flux (5)
548-557 E10.3 uJy 5.8flux [-38/6383]?=-99 Spitzer/IRAC 5.8um band
flux density
559-568 E10.3 uJy e_5.8flux ?=-99 Uncertainty in 5.8flux (5)
570-579 E10.3 uJy 8.0flux [-101/3273]?=-99 Spitzer/IRAC 8.0um band
flux density
581-590 E10.3 uJy e_8.0flux ?=-99 Uncertainty in 8.0flux (5)
592-601 E10.3 uJy F606Wv08 [-0.6/4769]?=-99 AEGIS HST/ACS F606W band
flux density
603-612 E10.3 uJy e_F606Wv08 ?=-99 Uncertainty in F606Wfluxv08
614-623 E10.3 uJy F814Wv08 [-0.4/7766]?=-99 AEGIS HST/ACS F814W band
flux density
625-634 E10.3 uJy e_F814Wv08 ?=-99 Uncertainty in F814Wfluxv08
636-645 E10.3 uJy F125Wv08 [-3.5/8426]?=-99 AEGIS HST/WFC3 F125W band
flux density
647-656 E10.3 uJy e_F125Wv08 ?=-99 Uncertainty in F125Wfluxv08
658-667 E10.3 uJy F160Wv08 [-1.8/34070]?=-99 AEGIS HST/WFC3 F160W band
flux density
669-678 E10.3 uJy e_F160Wv08 ?=-99 Uncertainty in F160Wfluxv08
680-689 E10.3 uJy 5.8v08 [-9262/10640]?=-99 Spitzer/IRAC 5.8um band
flux density (6)
691-700 E10.3 uJy e_5.8v08 ?=-99 Uncertainty in 5.8fluxv08
702-711 E10.3 uJy 8.0v08 [-5470/6051]?=-99 Spitzer/IRAC 8.0um band
flux density (6)
713-722 E10.3 uJy e_8.0v08 ?=-99 Uncertainty in 8.0fluxv08
724-733 E10.3 uJy F606WPHZ [-0.5/1016]?=-99 HST/ACS F606W band
flux density (7)
735-744 E10.3 uJy e_F606WPHZ ?=-99 Uncertainty in F606WPHZ
746-755 E10.3 uJy F814WPHZ [-1.5/1744]?=-99 HST/ACS F814W band flux
density (7)
757-766 E10.3 uJy e_F814WPHZ ?=-99 Uncertainty in F814WPHZ
768-777 E10.3 uJy F125WPHZ [-0.3/2891]?=-99 HST/WFC3 F125W band
flux density (7)
779-788 E10.3 uJy e_F125WPHZ ?=-99 Uncertainty in F125WPHZ
790-799 E10.3 uJy F140WPHZ [0.0002/11700]?=-99 HST/WFC3 F140W band
flux density (7)
801-810 E10.3 uJy e_F140WPHZ ?=-99 Uncertainty in F140WPHZ
812-821 E10.3 uJy F160WPHZ [-1.3/3410]?=-99 HST/WFC3 F160W band
flux density (7)
823-832 E10.3 uJy e_F160WPHZ ?=-99 Uncertainty in F160WPHZ
834-841 F8.5 --- zspec [-1/3.5]?=-99 DEEP2/3 spectroscopic redshift (8)
--------------------------------------------------------------------------------
Note (1): In the F160W-based SExtractor catalog.
Note (2): In the F160W mosaic, after they have been converted to the CFHTLS
astrometric system. The values in these two columns are suggested
as the coordinates of the objects in the catalog.
Note (3): In the F160W mosaic, whose astrometry was calibrated using the
Lotz et al. (2008ApJ...672..177L 2008ApJ...672..177L) system.
Note (4): Code as follows:
1 = sources falling in regions of low S/N as it can be at the borders of
the mosaic;
2 = source, as identified by its footprint in the segmentation map,
falls close to a bright star or to its diffraction spikes;
3 = source suffers from both a low S/N and contamination from bright stars.
0 = Sources free from any of the above effects.
Note (5): A value of -99 has been set to the flux and associated uncertainty
for those objects falling outside the coverage of the mosaic in a
specific band or when bad pixels within the segmentation map
contaminate the flux measurement.
Note (6): With the old convolution kernel, which were used for the computation
of photometric redshifts and stellar masses.
Note (7): Adopted to compute photometric redshifts and stellar population
parameters. The fluxes and uncertainties in some HST bands and for
some of the sources were initially set to -99 even if there was no
indication of bad measurement. Earlier columns contain the fixed
values. Here we include the original version of these columns as such
measurements were adopted to estimate photometric redshifts and
stellar population parameters. These columns are identified by the
suffix PHZ (for photo-z). Tests showed that photo-z for most of the
sources were not strongly affected by this problem. However, we
further OR-flag the FLAGS column with the value 4 to reflect the
160 sources for which δz/(1+z)>0.1 and potential less robust
stellar population parameters.
Note (8): If no match is found, the value has been set to -99.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table7.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 --- Seq Sequential identifier number
(<[SYM2017] NNNNN> in Simbad)
7- 11 F5.3 --- [0/9.9] Median of photometric redshift
measurements
13- 19 F7.3 --- photz-S [0.03/10]?=-99 Salvato photometric redshift (1)
21- 25 F5.3 --- photz-M [0/9.6] Mobasher photometric redshift (1)
27- 32 F6.3 --- photz-F [0/10] Finkelstein photometric redshift (1)
34- 39 F6.3 --- photz-B [0.03/10]?=-1 Barro photometric redshift (1)
41- 46 F6.3 --- photz-Wi [0.01/10] Wiklind photometric redshift (1)
48- 54 F7.3 --- photz-Wu [0/10]?=-99 Wuyts photometric redshift (1)
56- 60 F5.3 --- D95 [0.01/7.4] Accuracy of photometric redshifts (2)
62- 69 F8.4 --- specz [-0.001/2.3]?=-99 Spectroscopic redshift of
control sample (3)
71- 75 F5.3 --- photzl68 Lower 68% confidence interval on
77- 81 F5.3 --- photzu68 Upper 68% confidence interval on
83- 87 F5.3 --- photzl95 Lower 95% confidence interval on
89- 93 F5.3 --- photzu95 Upper 95% confidence interval on
--------------------------------------------------------------------------------
Note (1): References are:
Salvato = Le Phare (Arnouts & Ilbert 2011ascl.soft08009A);
Mobasher = Mobasher+ 2015ApJ...808..101M 2015ApJ...808..101M;
Finkelstein = Finkelstein+ 2015, J/ApJ/810/71;
Barro = Barro+ 2011, J/ApJS/193/13;
Wiklind = Wiklind+ 2008ApJ...676..781W 2008ApJ...676..781W;
Wuyts = EAzY (Brammer+, 2008ApJ...686.1503B 2008ApJ...686.1503B) and
FAST (Kriek+, 2009ApJ...700..221K 2009ApJ...700..221K).
Note (2): Based on their confidence intervals (Dahlen+ 2013ApJ...775...93D 2013ApJ...775...93D).
Note (3): From the DEEP3 catalog (Cooper+, 2011, J/ApJS/193/14).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table8.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 --- Seq Sequential identifier number
(<[SYM2017] NNNNN> in Simbad) (1)
7- 16 F10.6 deg RAdeg Right Ascension in decimal degrees (J2000)
18- 26 F9.6 deg DEdeg Declination in decimal degrees (J2000)
28- 34 F7.3 mag Hmag [12.4/32.7]?=-99 HST/WFC3 F160W band
magnitude (2)
36- 37 I2 --- PFlag [0/11] Photometric catalog flag
39- 42 F4.2 --- S/G SExtractor CLASS_STAR parameter (0=galaxy)
44 I1 --- AGN Nandra+ 2015, J/ApJS/220/10 counterpart
flag (0=no counterpart)
46- 50 F5.3 --- zphot [0.001/9.9] Photometric redshift
52- 59 F8.4 --- zspec [-0.001/2.3]?=-99 DEEP3 catalog
spectroscopic redshift
61- 63 I3 --- q_zspec [-99/1] Quality flag on zspec (1=good) (3)
65- 67 I3 --- r_zspec [-99/2] zspec reference: 1=DEEP2/3
(See Cooper+, 2011, J/ApJS/193/14)
69- 74 F6.4 --- zbest [0.001/9.9] Best redshift measurement (4)
76- 79 F4.2 --- zbestl68 Lower 68% confidence interval on zbest (5)
81- 84 F4.2 --- zbestu68 Upper 68% confidence interval on zbest (5)
86- 89 F4.2 --- zbestl95 Lower 95% confidence interval on zbest (5)
91- 94 F4.2 --- zbestu95 Upper 95% confidence interval on zbest (5)
96-102 F7.3 --- zAGN [0.09/6]?=-99 Nandra+ 2015, J/ApJS/220/10
X-ray catalog photometric redshift (6)
104-111 E8.2 [Msun] logM*N [4.2/12.4] Log stellar mass (7)
113-121 E9.2 [Msun] e_logM*N ?=-99 Uncertainty in logM*N
123-130 E8.2 [Msun] logM* [4.2/12.3] Log stellar mass (8)
132-140 E9.2 [Msun] e_logM* ?=-99 Uncertainty in logM*
142-147 F6.2 [Msun] logM*1 [6.3/12]?=-99 M14acons stellar mass (G1)
149-154 F6.2 [Msun] logM*2 [3.3/12.4]?=-99 M11atau
stellar mass (G1)
156-161 F6.2 [Msun] logM*3 [3.5/12.4]?=-99 M6atau^NEB cons stellar
mass (G1)
163-168 F6.2 [Msun] logM*4 ?=-99 M13atau cons stellar mass (G1)
170-174 F5.2 [Msun] logM*5 [4/12.5] M12acons stellar mass (G1)
176-181 F6.2 [Msun] logM*6 ?=-99 M6atau cons stellar mass (G1)
183-188 F6.2 [Msun] logM*7 [0/15.3]?=-99 M2atau cons
stellar mass (G1)
190-195 F6.2 [Msun] logM*8 [3.7/12.4]?=-99 M15acons stellar
mass (G1)
197-202 F6.2 [Msun] logM*9 [1.2/12.5]?=-99 M10ccons stellar
mass (G1)
204-209 F6.2 [Msun] logM*10 ?=-99 M14alin cons stellar mass (G1)
211-216 F6.2 [Msun] logM*11 ?=-99 M14adeltau cons stellar mass (G1)
218-223 F6.2 [Msun] logM*12 ?=-99 M14atau cons stellar mass (G1)
225-230 F6.2 [Msun] logM*13 ?=-99 M14ainctau cons stellar mass (G1)
232-237 F6.2 [Msun] logM*14 [6.3/11.7]?=-99 M_14a stellar mass (G1)
239-246 E8.2 [Msun] logM*Nml [3.5/12.4] Log stellar mass (9)
248-256 E9.2 [Msun] e_logM*Nml [0.0002/246]?=-99 Uncertainty in logM*Nml
258-265 E8.2 [Msun] logM*ml [4.3/13.2] Log stellar mass (10)
267-275 E9.2 [Msun] e_logM*ml ?=-99 Uncertainty in logM*ml
--------------------------------------------------------------------------------
Note (1): In the F160W-based SExtractor catalog.
Note (2): A value of 99.9999 indicates a "-NaN" value.
Note (3): Quality flag as follows:
1 = Good (840 occurrences);
2 = Fair (not used)
3 = Poor (not used)
-99 = No value (40617 occurrences)
Note (4): If spectroscopic redshift is available, then zbest=zspec,
otherwise zbest=zphot.
Note (5): On the photometric redshift measurements.
Note (6): Computed adopting AGN specific SED templates and priors (see
Nandra+ 2015, J/ApJS/220/10 for more details).
Note (7): From the median of the logarithm of stellar mass measurements
obtained taking into account nebular emission contamination.
Note (8): From the median of the logarithm of stellar mass measurements
obtained without considering nebular emission contamination.
Note (9): From the median of the linear value of the stellar mass
measurements obtained taking into account nebular emission
contamination.
Note (10): From the median of the linear value of the stellar mass
measurements obtained without taking into account nebular emission
contamination.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table9.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 --- Seq Sequential identifier number (1)
7- 11 F5.2 [yr] logA-2a [7.6/10.1] Log age from method 2a
13- 18 F6.3 Gyr tau-2a [0.3/12.6] The τ from method 2a (G1)
20- 23 F4.2 mag Av-2a [0/4] AV from method 2a
25- 33 E9.3 Msun/yr SFR-2a Star formation rate from method 2a
35- 43 E9.2 --- chi2-2a ?=-99 Reduced χ2 from method 2a
45- 49 F5.2 [yr] logA-4b [7/10.1] Log age from method 4b
51- 54 F4.2 mag E(B-V)-4b [0/0.8] The (B-V) color excess
from method 4b
56- 61 F6.2 [yr] logA-6a [7/10.2]?=-99 Log age
from method 6aτ
63- 68 F6.2 Gyr tau-6a [0.1/15]?=-99 The τ
from method 6aτ (G1)
70- 75 F6.2 mag E(B-V)-6a [0/1.1]?=-99 The (B-V) color excess
from method 6aτ
77- 86 E10.3 Msun/yr SFR-6a [0/11430]?=-99 Star formation rate
from method 6aτ
88- 93 F6.2 Sun Z-6a [0.02/2.5]?=-99 Gass metallicity
from method 6aτ
95 I1 --- Elaw-6a Extinction law method 6aτ (2)
97-105 E9.2 --- chi2-6a [0.05/220]?=-99 Reduced χ2
from method 6aτ
107-115 E9.2 10-7W/Hz L1400-6a ?=-99 Rest-frame luminosity at 1400Å
from method 6aτ (3)
117-125 E9.2 10-7W/Hz L2700-6a ?=-99 Rest-frame luminosity at 2700Å
from method 6aτ (3)
127-132 F6.2 mag UMag-6a [-26.2/-4.8]?=-99 U rest-frame AB
magnitude from method 6aτ
134-139 F6.2 mag BMag-6a [-26.3/-5.5]?=-99 B rest-frame AB
magnitude from method 6aτ
141-146 F6.2 mag VMag-6a [-26.1/-5.9]?=-99 V rest-frame AB
magnitude from method 6aτ
148-153 F6.2 mag RMag-6a [-26.2/-6.1]?=-99 R rest-frame AB
magnitude from method 6aτ
155-160 F6.2 mag IMag-6a [-26.5/-6.3]?=-99 I rest-frame AB
magnitude from method 6aτ
162-167 F6.2 mag JMag-6a [-27/-6.7]?=-99 J rest-frame AB magnitude
from method 6aτ
169-174 F6.2 mag KMag-6a [-27/-6.3]?=-99 K rest-frame AB magnitude
from method 6aτ
176-182 F7.3 [yr] logA-10c [8/10.2]?=-99 Log age from method 10c
184 I1 --- SFH-10c Star formation history method 10c (4)
186-191 F6.2 Gyr tau-10c [0.1/1]?=-99 The τ from method 10c (5)
193-198 F6.2 Sun Z-10c [0/0.04]?=-99 Gas metallicity
from method 10c
200-205 F6.2 [Msun] Ml99-11a [7/12.4]?=-99 Log lower 99% confidence
stellar mass interval
from method 11aτ
207-212 F6.2 [Msun] Mu99-11a [7/12.5]?=-99 Log upper 99% confidence
stellar mass interval
from method 11aτ
214-220 F7.3 [yr] logA-11a [7/10.1]?=-99 Log age
from method 11aτ
222-230 E9.2 [Msun/yr] SFR-11a [0/3267] Log star formation rate for
method 11aτ (8)
232-236 F5.2 [Msun] Ml68-12a ?=-9 Log lower 68% confidence stellar
mass interval from method 12a
238-242 F5.2 [Msun] Mu68-12a ?=-9 Log upper 68% confidence stellar
mass interval from method 12a
244-248 F5.2 [Msun] Ml95-12a ?=-9 Log lower 95% confidence stellar
mass interval from method 12a
250-254 F5.2 [Msun] Mu95-12a ?=-9 Log upper 95% confidence stellar
mass interval from method 12a
256-260 F5.3 [yr] logA-12a [7.3/9.9] Log age from method 12a
262-265 F4.2 Gyr tau-12a [0/2] The τ from method 12a (G1)
267-271 F5.3 mag E(B-V)-12a The (B-V) color excess from method 12a
273-276 F4.2 Sun Z-12a [0/0.05] Gas metallicity form method 12a
278-282 F5.2 [Lsun] Lbol-12a [6/13.8] Log bolometric luminosity from
method 12a
284-291 E8.2 --- chi2-12a [0/999] Reduced χ2 from method 12a
293-297 F5.2 [yr] logA-13a [7.7/10.1] Log age from method 13aτ
299-304 F6.3 Gyr tau-13a [0.3/10] The τ
from method 13aτ (G1)
306-309 F4.2 mag Av-13a [0/4] V band extinction
from method 13aτ
311-319 E9.2 Msun/yr SFR-13a [0/30200] Star formation rate
from method 13aτ (8)
321-328 E8.2 --- chi2-13a [0.07/1250] Reduced χ2
from method 13aτ
330-336 F7.3 [yr] logA-14a [8/9.2]?=-99 Log age from method 14a
338 I1 --- SFH-14a Star formation history method 14a (6)
340-346 F7.3 Gyr tau-14a [0.1/7]?=-99 τ from method 14a (G1)
348-354 F7.3 mag E(B-V)-14a [0.01/1]?=-99 The (B-V) color excess
from method 14a
356-365 E10.2 Msun/yr SFR-14a [0.0004/1579]?=-99 Star formation rate
from method 14a
367 I1 --- q-14a [1/3] Fit quality from method 14a (7)
369-374 F6.2 [yr] logA-6at [7/10.2]?=-99 Log age
from method 6aτNEB
376-381 F6.2 Gyr tau-6at [0.1/15]?=-99 The τ
from method 6aτNEB (G1)
383-388 F6.2 mag E(B-V)-6at [0/1.1]?=-99 The (B-V) color excess from
method 6aτNEB
390-399 E10.2 Msun/yr SFR-6at [0/6174]?=-99 Star formation rate from
method 6aτNEB
401-406 F6.2 Sun Z-6at [0.02/2.5]?=-99 Gas metallicity from
method 6aτNEB
408 I1 --- Elaw-6at [1/2] Extintion law from
method 6aτNEB
410-418 E9.2 --- chi2-6at [0.05/208]?=-99 Reduced χ2 from
method 6aτNEB
420-428 E9.2 10-7W/Hz L1400-6at ?=-99 Rest-frame luminosity at
1400Å from method 6aτNEB (3)
430-438 E9.2 10-7W/Hz L2700-6at ?=-99 Rest-frame luminosity at 2700Å
from method 6aτNEB (3)
440-445 F6.2 mag UMag-6at [-26.4/-4.8]?=-99 U rest-frame AB
magnitude from method 6aτNEB
447-452 F6.2 mag BMag-6at [-26.5/-5.5]?=-99 B rest-frame AB
magnitude from method 6aτNEB
454-459 F6.2 mag VMag-6at [-26.7/-5.9]?=-99 V rest-frame AB
magnitude from method 6aτNEB
461-466 F6.2 mag RMag-6at [-26.6/-6.1]?=-99 R rest-frame AB
magnitude from method 6aτNEB
468-473 F6.2 mag IMag-6at [-26.5/-6.3]?=-99 I rest-frame AB
magnitude from method 6aτNEB
475-480 F6.2 mag JMag-6at [-27/-6.7]?=-99 J rest-frame AB magnitude
from method 6aτNEB
482-487 F6.2 mag KMag-6at [-27/-6.6]?=-99 K rest-frame AB magnitude
from method 6aτNEB
489-494 F6.2 [yr] logA-6ad [7/10.2]?=-99 Log Age from method 6adel
496-501 F6.2 Gyr tau-6ad [0.1/2]?=-99 The τ
from method 6adel (G1)
503-508 F6.2 mag E(B-V)-6ad [0/1.1]?=-99 The (B-V) color excess
from method 6adel
510-519 E10.2 Msun/yr SFR-6ad [0/58910]?=-99 Star formation rate
from method 6adel
521-526 F6.2 Sun Z-6ad [0.02/2.5]?=-99 Gas metallicity
from method 6adel
528 I1 --- Elaw-6ad [1/2] Extinction law method 6adel
530-538 E9.2 --- chi2-6ad ?=-99 Reduced χ2
from method 6adel
540-548 E9.2 10-7W/Hz L1400-6ad ?=-99 Rest-frame luminosity at 1400Å
from method 6adel (3)
550-558 E9.2 10-7W/Hz L2700-6ad ?=-99 Rest-frame luminosity at 2700Å
from method 6adel (3)
560-565 F6.2 mag UMag-6ad [-26.6/-4.8]?=-99 U rest-frame AB
magnitude from method 6adel
567-572 F6.2 mag BMag-6ad [-26.7/-5.6]?=-99 B rest-frame AB
magnitude from method 6adel
574-579 F6.2 mag VMag-6ad [-26.4/-5.3]?=-99 V rest-frame AB
magnitude from method 6adel
581-586 F6.2 mag RMag-6ad [-26.3/-5.2]?=-99 R rest-frame AB
magnitude from method 6adel
588-593 F6.2 mag IMag-6ad [-26.1/-4.9]?=-99 I rest-frame AB
magnitude from method 6adel
595-600 F6.2 mag JMag-6ad [-26.4/-4.4]?=-99 J rest-frame AB
magnitude from method 6adel
602-607 F6.2 mag KMag-6ad [-26.4/-3.5]?=-99 K rest-frame AB
magnitude from method 6adel
609-614 F6.2 [yr] logA-6ai [7/10.1]?=-99 Log age from method 6ainv
616-621 F6.2 Gyr tau-6ai [0.1/15]?=-99 τ from
method 6ainv (G1)
623-628 F6.2 mag E(B-V)-6ai [0/1.1]?=-99 The (B-V) color excess from
method 6ainv
630-639 E10.2 Msun/yr SFR-6ai [5e-6/15950]?=-99 Star formation rate from
method 6ainv
641-646 F6.2 Sun Z-6ai [0.02/2.5]?=-99 Gas metallicity
from method 6ainv
648 I1 --- Elaw-6ai Extinction law method 6ainv
650-658 E9.2 --- chi2-6ai [0.05/191]?=-99 Reduced χ2
from method 6ainv
660-668 E9.2 10-7W/Hz L1400-6ai ?=-99 Rest-frame luminosity at 1400Å
from method 6ainv (3)
670-678 E9.2 10-7W/Hz L2700-6ai ?=-99 Rest-frame luminosity at 2700Å
from method 6ainv (3)
680-685 F6.2 mag UMag-6ai [-26.3/-4.7]?=-99 U rest-frame AB
magnitude from method 6ainv
687-692 F6.2 mag BMag-6ai [-26.3/-5.6]?=-99 B rest-frame AB
magnitude from method 6ainv
694-699 F6.2 mag VMag-6ai [-26.2/-5.9]?=-99 V rest-frame AB
magnitude from method 6ainv
701-706 F6.2 mag RMag-6ai [-26/-6.1]?=-99 R rest-frame AB magnitude
from method 6ainv
708-713 F6.2 mag IMag-6ai [-26.2/-6.3]?=-99 I rest-frame AB
magnitude from method 6ainv
715-720 F6.2 mag JMag-6ai [-26.8/-6.7]?=-99 J rest-frame AB
magnitude from method 6ainv
722-727 F6.2 mag KMag-6ai [-27.3/-6.6]?=-99 K rest-frame AB
magnitude from method 6ainv
729-735 F7.3 [yr] age-10cd [8/11]?=-99 Log age from method 10cdust
737 I1 --- SFH-10cd Star formation history from
method 10cdust (4)
739-744 F6.2 Gyr tau-10cd ?=-99 The τ from method 10cdust (5)
746-751 F6.2 Sun Z-10cd [0/0.04]?=-99 Gas metallicity
from method 10cdust
753-759 F7.3 [yr] age-14ac [8/9.3]?=-99 Log age
from method 14aconst
761-767 F7.3 mag E(B-V)-14ac [0.01/1]?=-99 The (B-V) color excess from
method 14aconst
769-778 E10.2 Msun/yr SFR-14ac [0.006/2099]?=-99 Star formation rate from
method 14aconst
780 I1 --- q-14ac [1/3] Fit quality
from method 14aconst (7)
782-788 F7.3 [yr] logA-14al [8/9.5]?=-99 Log age from method 14alin
790-796 F7.3 mag E(B-V)-14al [0.01/1]?=-99 The (B-V) color excess from
method 14alin
798-807 E10.2 Msun/yr SFR-14al [0.01/4497]?=-99 Star formation rate from
method 14alin
809 I1 --- q-14al Fit quality from method 14alin (7)
811-817 F7.3 [yr] logA-14ad [8/9.1]?=-99 Log age from method 14adel
819-825 F7.3 Gyr tau-14ad ?=-99 The τ from method 14adel (G1)
827-833 F7.3 mag E(B-V)-14ad [0.01/1]?=-99 The (B-V) color excess from
method 14adel
835-844 E10.2 Msun/yr SFR-14ad [0.001/4454]?=-99 Star formation rate from
method 14adel
846 I1 --- q-14ad Fit quality from method 14adel (7)
848-854 F7.3 [yr] logA-14at [8/10]?=-99 Log age from method 14aτ
856-862 F7.3 Gyr tau-14at ?=-99 τ from method 14aτ (G1)
864-870 F7.3 mag E(B-V)-14at [0.01/1]?=-99 The (B-V) color excess from
method 14aτ
872-881 E10.2 Msun/yr SFR-14at [0.0004/2052]?=-99 Star formation rate
from method 14aτ
883 I1 --- q-14at [1/3] Fit quality
from method 14aτ (7)
--------------------------------------------------------------------------------
Note (1): In the F160W-based SExtractor catalog.
Note (2): Method as follows:
1 = Calzetti+ 2000ApJ...533..682C 2000ApJ...533..682C dust extinction law;
2 = SMC.
Note (3): In units of erg/s/Hz.
Note (4): Flag as follows:
1 = exponentially decreasing;
2 = constant;
3 = truncated;
4 = no solution.
Note (5): -99 if SFH=2 or 4.
Note (6): Flag as follows:
1 = constant;
2 = linearly increasing;
3 = delayed;
4 = exponentially decreasing.
Note (7): Flag as follows:
1 = Best;
2 = Good;
3 = Bad/No solution.
Note (8): 140 and 44 values "1.000e-99" have been set to 0.000e+00 by CDS
in SFR-11a and SFR-13a, respectively.
--------------------------------------------------------------------------------
Global notes:
Note (G1): See Table 4 (below) for details on the configuration of each method.
Table 4: Configurations adopted by each team for the measurement of
stellar masses
-------------------------------------------------------------------
Label Code SSP SFH Z/Z☉ IMF Neb.
Lines
-------------------------------------------------------------------
M2 FAST BC03 tau 1 C03 no
M6 own BC03 tau 1 C03 no
M10 HyperZ MA05 tau, const., trunc. 0.2-2.5 C03 no
M11 Le Phare BC03 tau 0.4, 1 C03 yes
M12 WikZ BC03 del-tau 0.2-2.5 C03 no
M13 FAST BC03 tau 1 C03 no
M14 SpeedyMC BC03 tau, del-tau,
const., lin. incr.,
incr.-tau 1 C03 yes
M15 own2 BC03 del-tau 0.2-2.5 C03 no
-------------------------------------------------------------------
Labels as defined in Mobasher et al. (2015ApJ...808..101M 2015ApJ...808..101M).
Code from:
FAST = Kriek et al. 2009ApJ...700..221K 2009ApJ...700..221K
own = PI: Fontana
HyperZ = Bolzonella et al. 2000A&A...363..476B 2000A&A...363..476B
Le Phare = Ilbert et al. 2006A&A...457..841I 2006A&A...457..841I
WikZ = Wiklind et al. 2008ApJ...676..781W 2008ApJ...676..781W
SpeedyMC = Acquaviva et al. 2012IAUS..284...42A 2012IAUS..284...42A
own2 = Lee et al. 2010ApJ...725.1644L 2010ApJ...725.1644L
Simple stellar population (SSP) models are:
BC03 = Bruzual & Charlot (2003MNRAS.344.1000B 2003MNRAS.344.1000B) and
MA05 = Maraston (2005MNRAS.362..799M 2005MNRAS.362..799M).
Star formation histories (SFH) are:
tau = exponentially declining;
const. = constant;
trunc. = exponentially decreasing with truncation;
del-tau = delayed exponential (SFH∝t*exp(-t/τ));
lin. incr. = linearly rising;
incr.-tau = exponentially rising
Initial Mass Function (IMF) from Chabrier 2003ApJ...586L.133C 2003ApJ...586L.133C (C03)
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 19-Jun-2017