J/ApJS/229/34 Effects of preionization in radiative shocks (Sutherland+, 2017)
Effects of preionization in radiative shocks.
I. Self-consistent models.
Sutherland R.S., Dopita M.A.
<Astrophys. J. Suppl. Ser., 229, 34-34 (2017)>
=2017ApJS..229...34S 2017ApJS..229...34S (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics ; Magnetic fields
Keywords: atomic data; atomic processes; radiative transfer; shock waves
Abstract:
In this paper we treat the preionization problem in shocks over the
velocity range 10<vs<1500km/s in a self-consistent manner. We
identify four distinct classes of solutions controlled by the value of
the shock-precursor parameter, Ψ=Q/vs, where Q is the ionization
parameter of the UV photons escaping upstream. This parameter
determines both the temperature and the degree of ionization of the
gas entering the shock. In increasing velocity, the shock solution
regimes are cold neutral precursors (vs≲40km/s), warm neutral
precursors (40≲vs≲75km/s), warm partly ionized precursors
(75≲vs≲120km/s), and fast shocks in which the preshock gas is in
photoionization equilibrium and is fully ionized. The main effect of a
magnetic field is to push these velocity ranges to higher values and
to limit the postshock compression. In order to facilitate comparison
with observations of shocks, we provide a number of convenient scaling
relationships for parameters, such as postshock temperature,
compression factors, cooling lengths, and Hβ and X-ray
luminosity.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table12.dat 106 1425 Shock structural parameters
table13.dat 112 1425 Further shock structural parameters
table14.dat 120 1425 Shock radiation parameters
table15.dat 72 1425 Shock 4π steradian Balmer line radiation
--------------------------------------------------------------------------------
See also:
J/ApJS/208/10 : Effects of κ-distribution in HII regions (Dopita+, 2013)
J/ApJ/752/148 : κ-distributed electrons & OIII em. line (Nicholls+, 2012)
J/ApJ/619/755 : Modeling starburst SEDs (Dopita+, 2005)
Byte-by-byte Description of file: table12.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 E8.2 --- etaM [0/0.1] Magnetic to ram pressure ratio
ηM (2PB/Pram)
10- 19 F10.5 10-10T B0 [0/1721] Magnetic field; microGauss
21- 26 A6 --- MA Sonic Mach number (3.16, 10.00, 31.62, 100.00
or "infty")
28- 35 E8.2 --- R Ram pressure variable (G1)
37- 45 E9.3 dN/m2 Pram Ram pressure; dyne/cm2
47- 50 F4.2 [km/s] logVs [1.3/3.2] Log velocity
52- 60 E9.8 cm-3 nH [0.004/251200] Hydrogen density
62- 70 E9.3 K PreT [10/59790] Pre-shock temperature
72- 80 E9.3 K PostT [6251/31920000] Post-shock temperature
82- 90 E9.3 --- HI H I ionization fraction
92-100 E9.3 --- HII H II ionization fraction
102-106 F5.3 --- Mass [0.6/1.3] Particle mass; a.m.u.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table13.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 E8.2 --- etaM [0/0.1] Magnetic to ram pressure ratio
ηM (2PB/Pram)
10- 19 F10.5 10-10T B0 [0/1721] Magnetic field; microGauss
21- 26 A6 --- MA Sonic Mach number (3.16, 10.00, 31.62, 100.00
or "infty")
28- 35 E8.2 --- R Ram pressure variable (G1)
37- 45 E9.3 dN/m2 Pram Ram pressure; dyne/cm2
47- 50 F4.2 [km/s] logVs [1.3/3.2] Log velocity
52- 56 F5.2 --- Mach [3.3/88.1] Mach number
58- 66 E9.3 --- Prea [0/646] Pre-shock magnetic α; PB/Pgas
68- 76 E9.3 --- Posta [0/0.4] Post-shock magnetic α; PB/Pgas
78- 82 F5.3 --- Jump [2.6/4] Compresion jump factor
84- 92 E9.3 --- Max [3/169800] Maximum compression factor (1)
94-102 E9.3 cm-2 lam4 Cooling column density; λ4
104-112 E9.3 cm-2 lam3 Cooling column density; λ3
--------------------------------------------------------------------------------
Note (1): using density after cooling to log10(T)=3.0
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table14.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 E8.2 --- etaM [0/0.1] Magnetic to ram pressure ratio
ηM (2PB/Pram)
10- 19 F10.5 10-10T B0 [0/1721] Magnetic field; microGauss
21- 26 A6 --- MA Sonic Mach number (3.16, 10.00, 31.62, 100.00
or "infty")
28- 35 E8.2 --- R Ram pressure variable (G1)
37- 45 E9.3 dN/m2 Pram Ram pressure; dyne/cm2
47- 50 F4.2 [km/s] logVs [1.3/3.2] Log velocity
52- 60 E9.3 cm-3 nH [0.004/251200] Hydrogen density
62- 70 E9.3 --- PsiTot Total photon production parameter
72- 80 E9.3 --- PsiH [0/24] Hydrogen-ionizing photon production
parameter
82- 90 E9.3 --- PsiKeV [0/0.9] X-ray-ionizing photon production
parameter
92-100 E9.3 --- PhiTot Total energy production parameter
102-110 E9.3 --- PhiH Hydrogen-ionizing energy production parameter
112-120 E9.3 --- PhiKeV X-ray-ionizing energy production parameter
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table15.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 E8.2 --- etaM [0/0.1] Magnetic to ram pressure ratio
ηM (2PB/Pram)
11- 16 A6 --- MA Sonic Mach number (3.16, 10.00, 31.62, 100.00
or "infty")
18- 25 E8.2 --- R Ram pressure variable (G1)
27- 30 F4.2 [km/s] logVs [1.3/3.2] Log velocity
32- 40 E9.3 cm-3 nH [0.004/251200] Hydrogen density
42- 50 E9.3 --- PsiHb Hβ photon production parameter (1)
52- 60 E9.3 --- PsiHa Hα photon production parameter (1)
62- 66 F5.3 --- PhRatio [3.9/8.1] Ratio of Hβ to Hα
photon production parameters
68- 72 F5.3 --- IntRatio [2.9/6] Ratio of Hβ to Hα
intensities
--------------------------------------------------------------------------------
Note (1): Where ΦHβ = 4.0862e-12 ΨHβ
and ΦHα = 3.0268e-12 ΨHα
--------------------------------------------------------------------------------
Global notes:
Note (G1): nH*v2s : nH in cm-3, vs in km/s
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Dopita et al. Paper II. 2017ApJS..229...35D 2017ApJS..229...35D
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 20-Jun-2017