J/ApJS/237/13 Models and yields of 13-120M☉ massive stars (Limongi+, 2018)
Presupernova evolution and explosive nucleosynthesis of rotating massive stars
in the metallicity range -3≤[Fe/H]≤0.
Limongi M., Chieffi A.
<Astrophys. J. Suppl. Ser., 237, 13 (2018)>
=2018ApJS..237...13L 2018ApJS..237...13L
ADC_Keywords: Models; Supernovae; Stars, masses; Abundances, [Fe/H]
Keywords: stars: evolution; stars: interiors; stars: massive; stars: rotation;
supernovae: general
Abstract:
We present a new grid of presupernova models of massive stars
extending in mass between 13 and 120M☉, covering four
metallicities (i.e., [Fe/H]=0, -1, -2, and -3) and three initial
rotation velocities (i.e., 0, 150, and 300km/s). The explosion has
been simulated following three different assumptions in order to show
how the yields depend on the remnant mass-initial mass relation. An
extended network from H to Bi is fully coupled to the physical
evolution of the models. The main results can be summarized as
follows. (a) At solar metallicity, the maximum mass exploding as a red
supergiant (RSG) is of the order of 17M☉ in the nonrotating
case, with the more massive stars exploding as Wolf-Rayet (WR) stars.
All rotating models, conversely, explode as WR stars. (b) The
interplay between the core He-burning and the H-burning shell,
triggered by the rotation-induced instabilities, drives the synthesis
of a large primary amount of all the products of CNO, not just 14N.
A fraction of them greatly enriches the radiative part of the He core
(and is responsible for the large production of F), and a fraction
enters the convective core, leading therefore to an important primary
neutron flux able to synthesize heavy nuclei up to Pb. (c) In our
scenario, remnant masses of the order of those inferred from the first
detections of gravitational waves (GW 150914, GW 151226, GW 170104, GW
170814) are predicted at all metallicities for none or moderate
initial rotation velocities.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table3.dat 77 333 Network reference matrix
table5.dat 130 864 Main evolutionary properties of the models
table6.dat 90 108 Wolf-Rayet lifetimes of the models
table7.dat 76 96 Properties of the presupernova models
table8.dat 111 3996 Isotopic yields - Recommended set
table9.dat 56 3996 Isotopic yields in the wind - Recommended set
--------------------------------------------------------------------------------
See also:
J/A+A/416/1117 : Abundances in the early Galaxy (Cayrel+, 2004)
J/ApJ/608/405 : Explosive yields of massive star (Chieffi+, 2004)
J/A+A/479/541 : VLT-FLAMES survey of massive stars (Hunter+, 2008)
J/A+A/496/841 : VLT-FLAMES survey of massive stars (Hunter+, 2009)
J/MNRAS/408/827 : Simulations of supernova explosions (Dessart+, 2010)
J/ApJ/724/341 : Nucleosynthesis of massive metal-free stars (Heger+, 2010)
J/A+A/530/A115 : Rotating massive MS stars evolutionary models (Brott+, 2011)
J/AJ/144/130 : Rotational velocities of nearby HIP B stars (Braganca+, 2012)
J/A+A/537/A146 : Stellar models with rotation. 0.8<M<120 (Ekstrom+, 2012)
J/ApJS/199/38 : Presupernova evolution (Limongi+, 2012)
J/ApJ/764/21 : Stellar evolutionary models with 13-120Msun (Chieffi+, 2013)
J/A+A/558/A131 : Model spectra of hot stars at the pre-SN stage (Groh+, 2013)
J/A+A/600/A81 : VLTS. 30Dor O giants and supergiants (Ramirez-Agudelo+, 2017)
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 A5 --- Iso Isotope identifier
7- 7 A1 --- f_Iso Flag on Iso (1)
9- 12 A4 --- p.alp The (p,α) reference code (2)
14- 17 A4 --- p.n The (p,n) reference code (2)
19- 22 A4 --- p.gam The (p,γ) reference code (2)
24- 27 A4 --- alp.p The (α,p) reference code (2)
29- 32 A4 --- alp.n The (α,n) reference code (2)
34- 37 A4 --- alp.gam The (α,γ) reference code (2)
39- 42 A4 --- n.p The (n,p) reference code (2)
44- 47 A4 --- n.alp The (n,α) reference code (2)
49- 52 A4 --- n.gam The (n,γ) reference code (2)
54- 57 A4 --- gam.p The (γ,p) reference code (2)
59- 62 A4 --- gam.alp The (γ,α) reference code (2)
64- 67 A4 --- gam.n The (γ,n) reference code (2)
69- 72 A4 --- betaP The (beta+) reference code (2)
74- 77 A4 --- betaM The (beta-) reference code (2)
--------------------------------------------------------------------------------
Note (1): Flag as follows:
a = We treat the ground (26Alg) and isomeric (26Alm) states of 26Al as
separate species for T≤1e9K, while we assume the two states to be
in statistical equilibrium (and therefore we consider just one isotope)
above this temperature (Limongi & Chieffi 2006)
b = 26Alg ground state
c = 26Alm isomeric state
Note (2): Reference as follows:
betD = beta plus decay;
desc = Descouvemont et al. (2004ADNDT..88..203D 2004ADNDT..88..203D);
ka03 = Dillmann et al. (2014NDS...120..171D 2014NDS...120..171D), KADoNiS v0.3;
nacr = Angulo et al.(1999NuPhA.656....3A 1999NuPhA.656....3A), NACRE;
cf88 = Caughlan & Fowler (1988ADNDT..40..283C 1988ADNDT..40..283C);
ku02 = Kunz et al. (2002ApJ...567..643K 2002ApJ...567..643K), adopted rate;
im05 = Imbriani et al. (2005EPJA...25..455I 2005EPJA...25..455I);
mc10 = Iliadis et al. (2010NuPhA.841...31M 2010NuPhA.841...31M);
bb92 = Rauscher et al. (1994ApJ...429..499R 1994ApJ...429..499R);
wies = M. Wiescher and collaborators;
rath = last version of the REACLIB available at the web site
http://nucastro.org/reaclib.html;
wago = Wagoner (1969ApJS...18..247W 1969ApJS...18..247W);
mafo = Malaney & Fowler (1989ApJ...345L...5M 1989ApJ...345L...5M);
fkth = Cowan et al. (1991PhR...208..267C 1991PhR...208..267C);
wfho = Wagoner et al. (1967ApJ...148....3W 1967ApJ...148....3W);
od94 = Oda et al. (1994ADNDT..56..231O 1994ADNDT..56..231O);
bl03 = Blackmon et al. (2003NuPhA.718..127B 2003NuPhA.718..127B);
kart = Dillmann+ (Dillmann I., Plag R., Kappeler F. and Rauscher T. 2009
in Proc. Workshop "EFNUDAT Fast Neutrons--Scientific Workshop on
Neutron Measurements, Theory Applications" ed F.-J. Hambsch
(Luxembourg: Publications Office of the European Union) 55) in the
energy range 5-100keV and Rauscher & Thielemann (2000ADNDT..75....1R 2000ADNDT..75....1R)
above this limit, but rescaled to match the experimental values of
Dillmann+ at 100keV;
mc11 = Sallaska et al. (2011PhRvC..83c4611S 2011PhRvC..83c4611S);
rt = Rauscher & Thielemann (2000);
de07 = de Smet et al. (2007PhRvC..76d5804D 2007PhRvC..76d5804D);
ko97 = Koehler et al. (1997PhRvC..56.1138K 1997PhRvC..56.1138K);
ffn8 = Fuller, Fowler & Newman (1982ApJS...48..279F 1982ApJS...48..279F) ;
og10 = Oginni et al. (2011PhRvC..83b5802O 2011PhRvC..83b5802O);
ka02 = KADoNiS v0.2 - http://kadonis.org/
il09 = Iliadis et al. (2011ApJS..193...16I 2011ApJS..193...16I);
nass = Nassar et al. (2006PhRvL..96d1102N 2006PhRvL..96d1102N);
lp00 = Langanke & Martinez-Pinedo (2000NuPhA.673..481L 2000NuPhA.673..481L);
laur = van Wormer et al. (1994ApJ...432..326V 1994ApJ...432..326V);
re98 = Rehm et al. (1998PhRvL..80..676R 1998PhRvL..80..676R);
taka = Takahashi & Yokoi (1987ADNDT..36..375T 1987ADNDT..36..375T);
tanu = terrestrial half-life.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 km/s Vel [0/300] Velocity
5- 6 I2 [Sun] [Fe/H] [-3/0] Metallicity
8- 10 I3 Msun IMass [13/120] Initial mass
12- 14 A3 --- Phase Evolutionary phase (1)
16- 22 E7.2 yr Time [1e-05/21500000] Lifetime
24- 28 F5.2 Msun MCC [0/95.5] Maximum mass of convective core
30- 33 F4.2 [K] logT [3.5/5.4] log effective temperature
35- 38 F4.2 [solLum] logL [4/6.7] log luminosity
40- 45 F6.2 Msun TMass [5/120] Total mass
47- 51 F5.2 Msun MHe [0/81] Helium core mass
53- 57 F5.2 Msun MCO [0/59] CarbonOxygen core mass
59- 65 E7.2 km/s vEqua [0/645] Equatorial velocity
67- 74 E8.2 s-1 omega [0/0.0007] Surface angular velocity
76- 82 E7.2 --- Ratio [0/1] Ratio of omega to critical angular
velocity
84- 90 E7.2 10+53g/cm2/s Jtot [0/6.2] Total angular momentum
92- 98 E7.2 --- H [0/0.8] Surface Hydrogen mass fraction
100-106 E7.2 --- He [0.2/1] Surface Helium mass fraction
108-114 E7.2 --- N [2.7e-08/2.3] Surface Nitrogen mass fraction
116-122 E7.2 --- N/C [6.3e-08/156] Nitrogen to Carbon abundance
ratio
124-130 E7.2 --- N/O [1.4e-09/165] Nitrogen to Oxygen abundance
ratio
--------------------------------------------------------------------------------
Note (1): "MS" refers to the end of the pre main sequence phase, "H" to the end
of core H burning phase, "He" to the end of core He burning phase,
"PSN" to the end of the evolution.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 km/s Vel [0/300] Velocity
5- 6 I2 [Sun] [Fe/H] [-3/0] Metallicity
8- 10 I3 Msun Mass [13/120] Initial mass
12- 18 E7.2 yr tO [11400/17800000]? Lifetime during the O-type phase
20- 26 E7.2 yr tWR [307/1160000]? Lifetime during the WNR phase
28- 34 E7.2 yr tWNL [307/851000]? Lifetime during the WNL phase
36- 42 A7 --- WNL ? Central mass fraction at WNL stage start (1)
44- 50 E7.2 yr tWNE [812/156000]? Lifetime during the WNE phase
52- 58 A7 --- WNE ? Central mass fraction at WNE stage start (1)
60- 66 E7.2 yr tWNC [0.003/134000]? Lifetime during the WNC phase
68- 74 A7 --- WNC ? Central mass fraction at WNC stage start (1)
76- 82 E7.2 yr tWC [3220/295000]? Lifetime during the WC phase
84- 90 A7 --- WC ? Central mass fraction at WC stage start (1)
--------------------------------------------------------------------------------
Note (1): In the format XX Y.YY where XX is the element (either "H " or "He")
and Y.YY is the mass fraction of XX.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table7.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 km/s Vel [0/300] Velocity
5- 6 I2 [Sun] [Fe/H] [-3/0] Metallicity
8- 10 I3 Msun Mass [13/120] Initial mass
12- 16 F5.2 Msun H [0/24.2] Hydrogen present in the envelope
18- 22 F5.2 Msun He [0.4/26.5] Helium present in the envelope
24- 27 F4.2 Msun Fe [1/2.8] Iron core mass (1)
29- 33 F5.2 10+44J Ebind [0.6/47.6] Binding energy; 1e+51erg (2)
35- 38 F4.2 --- xi2.5 [0.02/0.6] Compactness parameter
40- 44 F5.3 10+44J.s JFe [0/0.2] Angular momentum within iron core (3)
46- 51 F6.3 10+44J.s JCO [0/11.4] Angular momentum within CO core (3)
53- 58 F6.3 10+44J.s JHe [0/19.1] Angular momentum within He core (3)
60- 64 F5.3 10+44J.s J1.5 [0/0.06] Angular momentum within inner
1.5M☉ (3)
66- 70 F5.3 10+44J.s J2.0 [0/0.2] Angular momentum within inner
2.0M☉ (3)
72- 76 A5 --- SNType Expected supernova type (SNIIP: 50 occurrences;
or SNIb) (4)
--------------------------------------------------------------------------------
Note (1): Defined as the mass coordinate corresponding to the sharp drop
of the electron profile below ∼0.49.
Note (2): Of the mass above the iron core.
Note (3): In units of 1e+51erg.s
Note (4): According to the classification suggested by
Hachinger et al. (2012MNRAS.422...70H 2012MNRAS.422...70H).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table8.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 km/s Vel [0/300] Velocity
5- 6 I2 [Sun] [Fe/H] [-3/0] Metallicity
8- 12 A5 --- Iso Isotope identifier
14- 23 E10.4 --- 13M [2.8e-60/6.3] The 13M☉ model yield of Isotope
25- 34 E10.4 --- 15M [3.9e-60/7.1] The 15M☉ model yield of Isotope
36- 45 E10.4 --- 20M [4.7e-60/9] The 20M☉ model yield of Isotope
47- 56 E10.4 --- 25M [6.4e-60/10.5] 25M☉ model yield of Isotope
58- 67 E10.4 --- 30M [0/11.6] The 30M☉ model yield of Isotope
69- 78 E10.4 --- 40M [0/15.6] The 40M☉ model yield of Isotope
80- 89 E10.4 --- 60M [0/29] The 60M☉ model yield of Isotope
91-100 E10.4 --- 80M [0/42.1] The 80M☉ model yield of Isotope
102-111 E10.4 --- 120M [0/68] The 120M☉ model yield of Isotope
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table9.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 km/s Vel [0/300] Velocity
5- 6 I2 [Sun] [Fe/H] [-3/0] Metallicity
8- 12 A5 --- Iso Isotope identifier
14- 23 E10.4 --- 13M [0/4.8] The 13M☉ model yield of Isotope
25- 34 E10.4 --- 15M [0/5.2] The 15M☉ model yield of Isotope
36- 45 E10.4 --- 20M [0/8.5] The 20M☉ model yield of Isotope
47- 56 E10.4 --- 25M [0/10.2] The 25M☉ model yield of Isotope
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 04-Sep-2018