J/ApJS/243/17  Strong DES lens candidates from neural networks  (Jacobs+, 2019)

An extended catalog of galaxy-galaxy strong gravitational lenses discovered in DES using convolutional neural networks. Jacobs C., Collett T., Glazebrook K., Buckley-Geer E., Diehl H.T., Lin H., McCarthy C., Qin A.K., Odden C., Escudero M.C., Dial P., Yung V.J., Gaitsch S., Pellico A., Lindgren K.A., Abbott T.M.C., Annis J., Avila S., Brooks D., Burke D.L., Rosell A.C., Kind M.C., Carretero J., da Costa L.N., De Vicente J., Fosalba P., Frieman J., Garcia-Bellido J., Gaztanaga E., Goldstein D.A., Gruen D., Gruendl R.A., Gschwend J., Hollowood D.L., Honscheid K., Hoyle B., James D.J., Krause E., Kuropatkin N., Lahav O., Lima M., Maia M.A.G., Marshall J.L., Miquel R., Plazas A.A., Roodman A., Sanchez E., Scarpine V., Serrano S., Sevilla-Noarbe I., Smith M., Sobreira F., Suchyta E., Swanson M.E.C., Tarle G., Vikram V., Walker A.R., Zhang Y. <Astrophys. J. Suppl. Ser., 243, 17 (2019)> =2019ApJS..243...17J 2019ApJS..243...17J
ADC_Keywords: Gravitational lensing; Surveys; Redshifts; Photometry, RI Keywords: gravitational lensing: strong; methods: data analysis; methods: statistical; surveys Abstract: We search Dark Energy Survey (DES) Year 3 imaging for galaxy-galaxy strong gravitational lenses using convolutional neural networks, extending previous work with new training sets and covering a wider range of redshifts and colors. We train two neural networks using images of simulated lenses, then use them to score postage-stamp images of 7.9 million sources from DES chosen to have plausible lens colors based on simulations. We examine 1175 of the highest-scored candidates and identify 152 probable or definite lenses. Examining an additional 20000 images with lower scores, we identify a further 247 probable or definite candidates. After including 86 candidates discovered in earlier searches using neural networks and 26 candidates discovered through visual inspection of blue-near-red objects in the DES catalog, we present a catalog of 511 lens candidates. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 72 511 Strong lens candidates from visual inspection of the neural network-selected sources table5.dat 32 743 *Possible strong lens systems selected by convolutional neural network (CNN) -------------------------------------------------------------------------------- Note on table5.dat: Possible strong lens systems but with grades 0<grade<2 indicating possible but not probable or definite lensing. -------------------------------------------------------------------------------- See also: VII/110 : Rich Clusters of Galaxies (Abell+ 1989) II/344 : KiDS-ESO-DR2 multi-band source catalog (de Jong+, 2015) II/357 : The Dark Energy Survey (DES): Data Release 1 (Abbott+, 2018) J/ApJ/690/1236 : COSMOS photometric redshift catalog (Ilbert+, 2009) J/ApJS/191/340 : Southern Cosmology Survey. II. (Menanteau+, 2010) J/ApJ/742/48 : Blanco survey of the lens BCS J2352-5452 (Buckley-Geer+, 2011) J/ApJ/749/38 : CFHTLS-SL2S-ARCS strong lens candidates (More+, 2012) J/ApJS/199/25 : CLASH sources for MACS1149.6+2223 (Postman+, 2012) J/ApJ/785/144 : SL2S galaxy-scale sample of lens candidates (Gavazzi+, 2014) J/ApJ/785/104 : redMaPPer. I. Algorithm applied to SDSS DR8 (Rykoff+, 2014) J/ApJS/216/20 : Blanco Cosmology Survey (BCS) new reduction (Bleem+, 2015) J/ApJS/216/27 : Galaxy clusters discovered in the SPT-SZ survey (Bleem+, 2015) J/ApJS/227/3 : Full spectroscopic release of the SPT-GMOS (Bayliss+, 2016) J/ApJS/232/15 : Candidate strong lens systems from DES obs. (Diehl+, 2017) http://des.ncsa.illinois.edu/releases/dr1/ : Dark Energy Survey (DES) home page Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- Cand Candidate identifier (DESJHHMM+DDMM) 16- 24 I9 --- objID [61748499/508636686] Object ID, DES Y3A1 coadd object tables 26- 34 F9.5 deg RAdeg Right Ascension, decimal degrees (J2000) 36- 44 F9.5 deg DEdeg Declination, decimal degrees (J2000) 46- 48 F3.1 --- Grade [2/3] Grade 50- 53 F4.2 --- z [0.04/1.6] Redshift (1) 55- 59 F5.1 mag imag [15.6/21] DES Y3A1 catalog i band magnitude 61- 63 A3 --- Notes Note(s) (2) 65- 72 A8 --- r_z Reference(s) for spectroscopic redshifts (3) -------------------------------------------------------------------------------- Note (1): Redshifts are BPZ (http://www.stsci.edu/~dcoe/BPZ/) photometric redshifts except where r_z is supplied, when spectroscopic redshifts are substituted. Note (2): Notes as follows: a = previously known (74 candidates); b = discovered through blue-near-red and rich cluster search described in Section 2.5, "Blue-near-red and rich cluster search"; c = found in both searches; d = found in previous CNN-based search. Note (3): References as follows: 1 = Diehl et al. (2017ApJS..232...15D 2017ApJS..232...15D); 2 = Bleem et al. (2015ApJS..216...27B 2015ApJS..216...27B); 3 = Furlanetto et al. (2013MNRAS.432...73F 2013MNRAS.432...73F); 4 = Stark et al. (2013MNRAS.436.1040S 2013MNRAS.436.1040S); 5 = More et al. (2012ApJ...749...38M 2012ApJ...749...38M); 6 = More et al. (2016MNRAS.455.1191M 2016MNRAS.455.1191M); 7 = Cabanac et al. (2007A&A...461..813C 2007A&A...461..813C); 8 = Gavazzi et al. (2014ApJ...785..144G 2014ApJ...785..144G); 9 = Hammer (1991ApJ...383...66H 1991ApJ...383...66H); 10 = Postman et al. (2012ApJS..199...25P 2012ApJS..199...25P); 11 = Bayliss (2012ApJ...744..156B 2012ApJ...744..156B); 12 = Lin et al. (2017ApJ...838L..15L 2017ApJ...838L..15L); 13 = Bayliss et al. (2016ApJS..227....3B 2016ApJS..227....3B); 14 = Menanteau et al. (2010ApJS..191..340M 2010ApJS..191..340M); 15 = Bleem et al. (2015ApJS..216...20B 2015ApJS..216...20B); 16 = Abell et al. (1989ApJS...70....1A 1989ApJS...70....1A); 17 = Nord et al. (2016ApJ...827...51N 2016ApJ...827...51N); 18 = Buckley-Geer et al. (2011ApJ...742...48B 2011ApJ...742...48B); 19 = Sonnenfeld et al. (2018PASJ...70S..29S 2018PASJ...70S..29S); 20 = Kostrzewa-Rutkowska et al. (2014MNRAS.441.3238K 2014MNRAS.441.3238K); 21 = Bettinelli et al (2016MNRAS.461L..67B 2016MNRAS.461L..67B). -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 I9 --- objID [61622068/508867520] Object ID, DES Y3A1 coadd object tables 11- 12 I2 h RAh Hour of Right Ascension (J2000) 13- 14 I2 min RAm Minute of Right Ascension (J2000) 15- 19 F5.2 s RAs Second of Right Ascension (J2000) 21- 21 A1 --- DE- Sign of the Declination (J2000) 22- 23 I2 deg DEd Degree of Declination (J2000) 24- 25 I2 arcmin DEm Arcminute of Declination (J2000) 26- 30 F5.2 arcsec DEs Arcsecond of Declination (J2000) 32- 32 A1 --- Notes Sources previously flagged as potential lens (1) -------------------------------------------------------------------------------- Note (1): References for sources previously flagged as potential lens as follows: 1 = Diehl et al. (2017ApJS..232...15D 2017ApJS..232...15D); 2 = Petrillo et al. (2019MNRAS.484.3879P 2019MNRAS.484.3879P); 3 = Sonnenfeld et al. (2018PASJ...70S..29S 2018PASJ...70S..29S); 4 = Wong et al. (2018ApJ...867..107W 2018ApJ...867..107W); 5 = Sonnenfeld et al. (2013ApJ...777...98S 2013ApJ...777...98S). -------------------------------------------------------------------------------- History: From electronic version of the journal References: Jacobs et al. Paper I. 2017MNRAS.471..167J 2017MNRAS.471..167J Jacobs et al. Paper II. 2019MNRAS.484.5330J 2019MNRAS.484.5330J
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 13-Dec-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line