J/ApJS/249/33    Nobeyama molecular line survey of SCUBA-2 cores    (Kim+, 2020)

Molecular cloud cores with a high deuterium fraction: Nobeyama single-pointing survey. Kim G., Tatematsu K., Liu T., Yi H.-W., He J., Hirano N., Liu S.-Y., Choi M., Sanhueza P., Toth L.V., Evans Ii N.J., Feng S., Juvela M., Kim K.-T., Vastel C., Lee J.-E., Nguyen Lu'o'ng Q., Kang M., Ristorcelli I., Feher O., Wu Y., Ohashi S., Wang K., Kandori R., Hirota T., Sakai T., Lu X., Thompson M.A., Fuller G.A., Li D., Shinnaga H., Kim J. <Astrophys. J. Suppl. Ser., 249, 33-33 (2020)> =2020ApJS..249...33K 2020ApJS..249...33K (SIMBAD/NED BibCode)
ADC_Keywords: Molecular data; Molecular clouds; Interstellar medium; YSOs; Star Forming Region; Surveys; Millimetric/submm sources Keywords: Clouds; Interstellar molecules; Astrochemistry; Star formation Abstract: We present the results of a single-pointing survey of 207 dense cores embedded in Planck Galactic Cold Clumps distributed in five different environments (λ Orionis, Orion A, Orion B, the Galactic plane, and high latitudes) to identify dense cores on the verge of star formation for the study of the initial conditions of star formation. We observed these cores in eight molecular lines at 76-94GHz using the Nobeyama 45m telescope. We find that early-type molecules (e.g., CCS) have low detection rates and that late-type molecules (e.g., N2H+ and c-C3H2) and deuterated molecules (e.g., N2D+ and DNC) have high detection rates, suggesting that most of the cores are chemically evolved. The deuterium fraction (D/H) is found to decrease with increasing distance, indicating that it suffers from differential beam dilution between the D/H pair of lines for distant cores (>1kpc). For λ Orionis, Orion A, and Orion B located at similar distances, D/H is not significantly different, suggesting that there is no systematic difference in the observed chemical properties among these three regions. We identify at least eight high-D/H cores in the Orion region and two at high latitudes, which are most likely to be close to the onset of star formation. There is no clear evidence of the evolutionary change in turbulence during the starless phase, suggesting that the dissipation of turbulence is not a major mechanism for the beginning of star formation as judged from observations with a beam size of 0.04pc. Description: The "SCUBA-2 Continuum Observations of Pre-protostellar Evolution (SCOPE)" survey discovered more than 3000 Planck Galactic Cold Clumps (PGCC) cores across the Galaxy at 850um with SCUBA-2 (Submillimetre Common-User Bolometer Array 2) on board the James Clerk Maxwell telescope (JCMT) (e.g., Yi+ 2018, J/ApJS/236/51 ; Eden+ 2019, J/MNRAS/485/2895). As a pilot study, we selected a total of 207 targets that are located at different Galactic positions (local Giant Molecular Clouds, high latitude, and Galactic plane). We carried out single-pointing observations toward the 850um intensity peak position of 207 SCUBA-2 cores with the 45m single-dish radio telescope of the Nobeyama Radio Observatory from 2017-February to 2018-May (CG161004, LP177001; P.I.: K. Tatematsu). The T70 receiver was adopted for observations toward all 207 SCUBA-2 cores in the c-C3H2 JKaKc=212-101 (85.34GHz), DNC J=1-0 (76.31GHz), HN13C J=1-0 (87.09GHz), and N2D+ J=1-0 (77.11GHz) molecular emission lines. The TZ receiver was used for observations toward 111 SCUBA-2 cores in the Orion region in the CCS JN=76-65 (CCS-L; 81.51GHz), CCS JN=87-76 (CCS-H; 93.87GHz), HC3N J=9-8 (81.88GHz), and N2H+ J=1-0 (93.17GHz) lines. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 165 207 Information of 207 SCUBA-2 cores embedded in Planck Galactic Cold Clumps table3.dat 137 121 Properties of 82GHz CCS, 94GHz CCS, HC3N, and N2H+ lines table4.dat 139 229 Properties of c-C3H2, DNC, HN13C, and N2D+ lines table5.dat 187 229 Column density, column density ratio, Mach number, and integrated intensity ratio of N2D+, N2H+, DNC, HN13C, CCS, and HC3N molecules -------------------------------------------------------------------------------- See also: II/328 : AllWISE Data Release (Cutri+ 2013) II/360 : Gaia DR2 x AllWISE catalogue (Marton+, 2019) J/ApJS/123/233 : Catalog of Optically selected cores (Lee+, 1999) J/ApJ/639/227 : MSX IRDC candidate catalog (Simon+, 2006) J/PASJ/59/1185 : Water maser in galactic IRAS sources (Sunada+, 2007) J/A+A/505/405 : A catalogue of Spitzer dark clouds (Peretto+, 2009) J/PASJ/63/S1 : Atlas of dark clouds based on 2MASS (Dobashi+, 2011) J/ApJ/756/60 : A 3mm line survey in 37 IR dark clouds (Sanhueza+, 2012) J/AJ/144/192 : Spitzer survey of Orion A & B. I. YSO cat. (Megeath+, 2012) J/ApJS/209/31 : The MYStIX IR-Excess Source catalog (MIRES) (Povich+, 2013) J/MNRAS/438/1848 : NGC 7129 Vilnius photometry (Straizys+, 2014) J/A+A/579/A80 : Star-forming regions deuteration (Gerner+, 2015) J/ApJS/220/11 : SEDs of Spitzer YSOs in the Gould Belt (Dunham+, 2015) J/MNRAS/458/3479 : SVM selection of WISE YSO Candidates (Marton+, 2016) J/MNRAS/460/3179 : APOGEE stars distance and extinction (Wang+, 2016) J/A+A/594/A28 : Planck Cat. of Galactic cold clumps (PGCC) (Planck+, 2016) J/ApJ/834/142 : Gould's Belt Distances Survey. II. OMC (Kounkel+, 2017) J/A+A/610/A30 : B stars in 4 open clusters (Aidelman+, 2018) J/A+A/611/A9 : LDN 183 and LDN 169 Vilnius photometry (Straizys+, 2018) J/ApJ/859/33 : GOBELINS. IV. VLBA obs. of Taurus (Galli+, 2018) J/ApJS/236/51 : PGCCs in lambda Orionis complex. II. 850um cores (Yi+, 2018) J/AJ/156/18 : APOGEE:Binary comp. of evolved stars (Price-Whelan+, 2018) J/ApJ/865/73 : GOBELINS. V. Kinematics of Perseus (Ortiz-Leon+, 2018) J/ApJ/886/102 : ALMA obs. of 70um dark high-mass clumps (Sanhueza+, 2019) J/MNRAS/485/2895 : The SCOPE 850um compact source catalogue (Eden+, 2019) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 20 A20 --- Name SCUBA-2 core name (1) 22- 23 I2 h RAh Hour of right ascension (J2000) (1) 25- 26 I2 min RAm Minute of right ascension (J2000) 28- 32 F5.2 s RAs Second of right ascension (J2000) 34 A1 --- DE- Sign of declination (J2000) (1) 35- 36 I2 deg DEd Degree of declination (J2000) (1) 38- 39 I2 arcmin DEm Arcminute of declination (J2000) 41- 44 F4.1 arcsec DEs Arcsecond of declination (J2000) 46- 57 A12 --- Assoc YSO association (2) 59- 62 F4.2 kpc Dist [0.11/9.21] Distance from this work 64- 65 I2 --- Ref [1/18] Reference for the adopted distance (3) 67- 70 F4.1 K Td [9.2/22.4] Dust temperature from PGCC from Eden+ (2019, J/MNRAS/485/2895) 72- 74 F3.1 K e_Td [0.4/8.6] Td uncertainty 76- 79 F4.1 10+23cm-2 NH2 [0.2/11.7] Hydrogen column density from Eden+ (2019, J/MNRAS/485/2895) (4) 81- 83 F3.1 10+23cm-2 e_NH2 [0.1/3.1] NH2 uncertainty 85- 86 A2 --- Env Environment surrounding the SCUBA-2 core (5) 88- 119 A32 --- YSO Source name of YSO 121- 124 A4 --- --- [PGCC] 126- 138 A13 --- PGCC Name of Planck Galactic Cold Clump (PGCC; GLLL.ll+BB.bb) 140- 165 A26 --- Cloud Name(s) of parent cloud(s) -------------------------------------------------------------------------------- Note (1): Name and coordinates from Yi+ (2018, J/ApJS/236/51) or Eden+ (2019, J/MNRAS/485/2895). Note (2): Young stellar object (YSO) association inferred by visual inspection with YSO information of SIMBAD data and protostar catalogs of WISE, Spitzer, Herschel, and GAIA ("Protostellar"=149 occurrences or "Starless"=58 occurrences). Note (3): Reference as follows: 1 = Aidelman et al. 2018, J/A+A/610/A30 2 = Camargo et al. 2012MNRAS.423.1940C 2012MNRAS.423.1940C 3 = Fischera & Martin 2012A&A...547A..86F 2012A&A...547A..86F 4 = Galli et al. 2018, J/ApJ/859/33 5 = Hirota et al. 2008PASJ...60..961H 2008PASJ...60..961H 6 = Humphreys 1978ApJS...38..309H 1978ApJS...38..309H 7 = Kounkel et al. 2017, J/ApJ/834/142 8 = Lada et al. 2009ApJ...703...52L 2009ApJ...703...52L 9 = Lombardi et al. 2008A&A...480..785L 2008A&A...480..785L 10 = Ortiz-Leon et al. 2018, J/ApJ/865/73 11 = Perryman et al. 1997, I/239 12 = Pidopryhora et al. 2015ApJS..219...16P 2015ApJS..219...16P 13 = Reid et al. 2016ApJ...823...77R 2016ApJ...823...77R 14 = Straizys et al. 2010BaltA..19..169S 2010BaltA..19..169S 15 = Straizys et al. 2014, J/MNRAS/438/1848 16 = Straizys et al. 2018, J/A+A/611/A9 17 = Sunada et al. 2007, J/PASJ/59/1185 18 = Wang et al. 2016, J/MNRAS/460/3179 Note (4): H2 column density is derived from the 850um peak intensity of the core and the dust temperature of PGCC (Yi+ 2018, J/ApJS/236/51 and Eden+ 2019, J/MNRAS/485/2895). Note (5): Environment as follows: OL = λ Orionis; 15 occurrences OA = Orion A; 70 occurrences OB = Orion B of the Orion region; 28 occurrences G = Galactic plane (|b|<2°); 52 occurrences H = high latitudes (|b|≥2°); 42 occurrences -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 20 A20 --- Name SCUBA-2 core name 22- 23 A2 --- l_Tpk82 [≤ ] Limit flag on Tpk82 (1) 25- 28 F4.2 K Tpk82 [0.14/1.3]? 82GHz CCS peak temperature at the TA* scale 30- 34 F5.2 km/s Vlsr82 [1.71/10.69]? 82GHz CCS Local Standard of Rest systemic velocity 36- 39 F4.2 km/s DelV82 [0.1/1.17]? 82GHz CCS full width at half maximum 41- 42 A2 --- l_Tpk94 [≤ ] Limit flag on Tpk94 (1) 44- 47 F4.2 K Tpk94 [0.14/0.94]? 94GHz CCS peak temperature at the TA* scale 49- 53 F5.2 km/s Vlsr94 [1.56/11.4]? 94GHz CCS Local Standard of Rest systemic velocity 55- 58 F4.2 km/s DelV94 [0.1/0.9]? 94GHz CCS full width at half maximum 60- 61 A2 --- l_TpkHC3N [≤ ] Limit flag on TpkHC3N (1) 63- 66 F4.2 K TpkHC3N [0.15/2.06]? HC3N peak temperature at the TA* scale 68- 72 F5.2 km/s VlsrHC3N [1.44/13.63]? HC3N Local Standard of Rest systemic velocity 74- 77 F4.2 km/s DelVHC3N [0.1/1.78]? HC3N full width at half maximum 79- 80 A2 --- l_TpkN2H [≤ ] Limit flag on TpkN2H (1) 82- 85 F4.2 K TpkN2H [0.16/4.9]? N2H+ peak temperature at the TA* scale (2) 87- 91 F5.2 km/s VlsrN2Hga [1.12/13.6]? N2H+ Local Standard of Rest systemic velocity (2) 93- 96 F4.2 km/s DelVN2Hga [0.19/1.48]? N2H+ full width at half maximum (2) 98- 102 F5.2 km/s VlsrN2H [1.35/13.6]? N2H+ systemic velocity (3) 104- 107 F4.2 km/s DelVN2H [0.22/1.42]? N2H+ FWHM (3) 109- 112 F4.1 K Tex [4/21.8]? Excitation temperature (3) 114- 116 F3.1 K e_Tex [0.1/4.3]? Tex uncertainty 118 A1 --- f_Tex d = value derived from dust temperature 120- 123 F4.1 --- tau [0.5/12.7]? Total line optical depth (3) 125- 127 F3.1 --- e_tau [0.1/4]? Tau uncertainty 129- 133 F5.1 K Tant [1.2/109]? Tantτ value (3) 135- 137 F3.1 K e_Tant [0.1/3.3]? Tant uncertainty -------------------------------------------------------------------------------- Note (1): All values are measured in a spectrum whose peak temperature is higher than 3σ. In the case of a peak temperature below 3σ, the 3σ level is listed as an upper limit. Note (2): Peak temperature at the TA* scale, systemic velocity, and FWHM inferred by Gaussian fitting to the brightest hyperfine component of the N2H+ line, respectively. Note (3): Systemic velocity, FWHM, excitation temperature, total line optical depth of all the hyperfine components (τ), and Tantτ(=(Tex-Tbg)τ) estimated through the hyperfine structure fitting to seven components of the N2H+ line, respectively. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 20 A20 --- Name SCUBA-2 core name 22- 23 A2 --- l_Tpkc [≤ ] Limit flag on Tpkc 25- 28 F4.2 K Tpkc [0.08/2.34] Peak temperature at the TA* scale of the c-C3H2 line 30- 35 F6.2 km/s Vlsrc [-31.72/106]? c-C3H2 systemic velocity 37- 40 F4.2 km/s DelVc [0.22/3.76]? c-C3H2 FWHM 42- 43 A2 --- l_TpkDNC [≤ ] Limit flag on TpkDNC 45- 48 F4.2 K TpkDNC [0.08/2.58] Peak temperature at the TA* scale of the DNC line 50- 55 F6.2 km/s VlsrDNC [-21/106]? DNC systemic velocity 57- 60 F4.2 km/s DelVDNC [0.2/3.65]? DNC FWHM 62- 63 A2 --- l_TpkHN13C [≤ ] Limit flag on TpkHN13C 65- 68 F4.2 K TpkHN13C [0.08/0.93] Peak temperature at the TA* scale of the HN13C line 70- 75 F6.2 km/s VlsrHN13C [-19.32/106.07]? HN13C systemic velocity 77- 80 F4.2 km/s DelVHN13C [0.27/3.32]? HN13C FWHM 82- 83 A2 --- l_TpkN2D [≤ ] Limit flag on TpkN2D 85- 88 F4.2 K TpkN2D [0.08/1.2] Peak temperature at the TA* scale of the N2D+ line from brightest hyperfine component 90- 95 F6.2 km/s VlsrN2Dga [-19.27/45.77]? N2D+ systemic velocity from the brightest hyperfine component 97- 100 F4.2 km/s DelVN2Dga [0.19/2]? N2D+ FWHM from the brightest hyperfine component 102- 107 F6.2 km/s VlsrN2D [-17.4/45.7]? N2D+ systemic velocity (1) 109- 112 F4.2 km/s DelVN2D [0.27/1.8]? N2D+ FWHM (1) 114- 116 F3.1 K Tex [4/9.8]? Excitation temperature (1) 118- 120 F3.1 K e_Tex [0.1/5]? Tex uncertainty 122 A1 --- f_Tex d=value is derived from dust temperature 124- 126 F3.1 --- tau [0.2/4.3]? Total line optical depth of all the hyperfine components (1) 128- 131 F4.1 --- e_tau [0.1/12.1]? Tau uncertainty 133- 135 F3.1 K Tant [0.3/9.5]? Tantτ(=(Tex-Tbg)τ) (1) 137- 139 F3.1 K e_Tant [0.1/1.2]? Tant uncertainty -------------------------------------------------------------------------------- Note (1): Systemic velocity, FWHM, excitation temperature, total line optical depth of all the hyperfine components, and Tant estimated through the hyperfine structure fitting to seven components of the N2D+ line, respectively. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 20 A20 --- Name SCUBA-2 core name 22- 23 A2 --- l_NN2D [≤> ] 3σ limit flag on NN2D 25- 29 F5.1 10+11cm-2 NN2D [3.7/140] N2D+ column density 31- 34 F4.1 10+11cm-2 e_NN2D [0.6/26]? NN2D uncertainty 36 A1 --- f_NN2D Flag on NN2D (1) 38- 39 A2 --- l_NN2H [≤> ] 3σ limit flag on NN2H 41- 44 F4.1 10+12cm-2 NN2H [0.7/67]? N2H+ column density 46- 48 F3.1 10+12cm-2 e_NN2H [0.1/7]? NN2H uncertainty 50 A1 --- f_NN2H Flag on NN2H (1) 52- 53 A2 --- l_NDNC [≤> ] 3σ limit flag on NDNC 55- 59 F5.1 10+11cm-2 NDNC [1.8/670] DNC column density 61- 65 F5.1 10+11cm-2 e_NDNC [1.3/340]? NDNC uncertainty 67 A1 --- f_NDNC Flag on NDNC (1) 69- 70 A2 --- l_NHN13C [≤> ] 3σ limit flag on NHN13C 72- 75 F4.1 10+11cm-2 NHN13C [1.9/64] HN13C column density 77- 80 F4.1 10+11cm-2 e_NHN13C [1.5/32]? NHN13C uncertainty 82 A1 --- f_NHN13C Flag on NHN13C (1) 84- 85 A2 --- l_NCCS [≤> ] 3σ limit flag on NCCS 87- 91 F5.1 10+11cm-2 NCCS [6.6/200]? 82GHz CCS column density 93- 97 F5.1 10+11cm-2 e_NCCS [4.2/100]? NCCS uncertainty 99 A1 --- f_NCCS Flag on NCCS (1) 101- 102 A2 --- l_NHC3N [≤> ] 3σ limit flag on NHC3N 104- 109 F6.1 10+11cm-2 NHC3N [5.2/1100]? HC3N column density 111- 115 F5.1 10+11cm-2 e_NHC3N [6/550]? NHC3N uncertainty 117 A1 --- f_NHC3N Flag on NHC3N (1) 119- 120 A2 --- l_N2D/N2H [≤> ] 3σ limit flag on N2D/N2H 122- 125 F4.2 --- N2D/N2H [0.04/1.71]? NN2D to NN2H ratio 127- 130 F4.2 --- e_N2D/N2H [0.01/0.14]? N2D/N2H uncertainty 132- 133 A2 --- l_DNC/HNC [≤> ] 3σ limit flag on DNC/HNC 135- 138 F4.1 --- DNC/HNC [0.1/14.6]? NDNC to NHN13C ratio 140- 143 F4.1 --- e_DNC/HNC [0.1/10.3]? DNC/HNC uncertainty 145- 146 A2 --- l_N2H/CCS [≤> ] 3σ limit flag on N2H/CCS 148- 151 F4.1 --- N2H/CCS [0.2/44.7]? NN2H to NCCS ratio 153- 156 F4.1 --- e_N2H/CCS [0.4/11.7]? N2H/CCS uncertainty 158- 159 A2 --- l_N2H/HCN [≤> ] 3σ limit flag on N2H/HCN 161- 164 F4.1 --- N2H/HCN [0.1/11.3]? NN2H to NHC3N ratio 166- 168 F3.1 --- e_N2H/HCN [0.1/5.6]? N2H/HCN uncertainty 170- 172 F3.1 --- M [0.3/2.4]? Mach number of the N2H+ line 174- 176 F3.1 --- e_M [0.1/0.4]? M uncertainty 178- 179 A2 --- l_Ratio [≤> ] 3σ limit flag on Ratio 181- 183 F3.1 --- Ratio [0.1/5.4]? Integrated intensity ratio of DNC to HN13C lines 185- 187 F3.1 --- e_Ratio [0.1/1.1]? Ratio uncertainty -------------------------------------------------------------------------------- Note (1): Flag as follows: d = the column density is derived from dust temperature D = lower limit when the assumed Tex is too low to constrain the upper bound -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Emmanuelle Perret [CDS] 24-Jan-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line