J/ApJS/258/26     Spectroscopic binaries from LAMOST MRS. I.     (Zhang+, 2022)

The spectroscopic binaries from the LAMOST Medium-Resolution Survey. I. Searching for double-lined spectroscopic binaries with a convolutional neural network. Zhang B., Jing Y.-J., Yang F., Wan J.-C., Ji X., Fu J.-N., Liu C., Zhang X.-B., Luo F., Tian H., Zhou Y.-T., Wang J.-X., Guo Y.-J., Zong W., Xiong J.-P., Li J. <Astrophys. J. Suppl. Ser., 258, 26 (2022)> =2022ApJS..258...26Z 2022ApJS..258...26Z
ADC_Keywords: Binaries, spectroscopic; Spectra, optical; Surveys; Radial velocities; Effective temperatures Keywords: Astronomy data analysis ; Close binary stars ; Convolutional neural networks ; Sky surveys ; Spectroscopy ; Spectroscopic binary stars Abstract: We developed a convolutional neural network model to distinguish the double-lined spectroscopic binaries (SB2s) from others based on single-exposure medium-resolution spectra (R∼7500). The training set consists of a large set of mock spectra of single stars and binaries synthesized based on the MIST stellar evolutionary model and ATLAS9 atmospheric model. Our model reaches a novel theoretic false-positive rate by adding a proper penalty on the negative sample (e.g., 0.12% and 0.16% for the blue/red arm when the penalty parameter Λ=16). Tests show that the performance is as expected and favors FGK-type main-sequence (MS) binaries with high mass ratio (q≥0.7) and large radial velocity separation (Δv≥50km/s). Although the real false-positive rate cannot be estimated reliably, validating on eclipsing binaries identified from Kepler light curves indicates that our model predicts low binary probabilities at eclipsing phases (0, 0.5, and 1.0) as expected. The color-magnitude diagram also helps illustrate its feasibility and capability of identifying FGK MS binaries from spectra. We conclude that this model is reasonably reliable and can provide an automatic approach to identify SB2s with period ≲10days. This work yields a catalog of binary probabilities for over 5 million spectra of 1 million sources from the LAMOST medium-resolution survey (MRS) and a catalog of 2198 SB2 candidates whose physical properties will be analyzed in a follow-up paper. Data products are made publicly available online, as well as our Github website. Description: We measured the radial velocities (RVs) for all the spectra (S/N>5) in LAMOST MRS DR8 v1.0 following the method we proposed in Zhang+ (2021ApJS..256...14Z 2021ApJS..256...14Z). See Section 4.1. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table4.dat 519 5893382 The 5 million binary probabilities and RVs obtained from the LAMOST MRS DR8 (v1.0) -------------------------------------------------------------------------------- Description of file: In the FTP section, datafile4.fits.gz is the original table in FITS format. See also: B/sb9 : SB9: 9th Catalogue of Spectroscopic Binary Orbits (Pourbaix+ 2004-2014) I/337 : Gaia DR1 (Gaia Collaboration, 2016) V/156 : LAMOST DR7 catalogs (Luo+, 2019) I/355 : Gaia DR3 Part 1. Main source (Gaia Collaboration, 2022) I/357 : Gaia DR3 Part 3. Non-single stars (Gaia Collaboration, 2022) J/A+A/444/643 : Candidate spectroscopic binaries in SDSS (Pourbaix+, 2005) J/A+A/465/257 : Radial velocity in multiple systems (Tokovinin+, 2007) J/AJ/140/184 : RAVE double-lined spectroscopic binaries (Matijevic+, 2010) J/ApJS/190/1 : A survey of stellar families (Raghavan+, 2010) J/PASP/126/914 : Kepler eclipsing binary stars. V. (Conroy+, 2014) J/AJ/151/68 : Kepler Mission. VII. Eclipsing binaries in DR3 (Kirk+, 2016) J/A+A/608/A95 : GES: multi-line spectroscopic binary candidates (Merle+, 2017) J/ApJS/228/24 : GALAH semi-automated classification scheme (Traven+, 2017) J/ApJS/235/5 : EA-type eclipsing binaries observed by LAMOST (Qian+, 2018) J/ApJS/245/34 : Abundances for 6 million stars from LAMOST DR5 (Xiang+, 2019) J/AJ/158/155 : SB candidates from the RAVE & Gaia DR2 surveys (Birko+, 2019) J/other/RAA/19.64 : LAMOST sp. binaries & variable stars (Qian+, 2019) J/MNRAS/496/1355 : Accurate SB2 radial velocities (Halbwachs+, 2020) J/A+A/635/A155 : Gaia-ESO Survey SB1 catalogue (Merle+, 2020) J/A+A/638/A145 : GALAH survey. FGK binary stars (Traven+, 2020) J/ApJ/891/23 : Stellar abundances from LAMOST MRS (SPCAnet) (Wang+, 2020) J/ApJS/249/31 : Short period sp. & EBs (LPSEB) from LAMOST & PTF (Yang+, 2020) J/ApJS/246/9 : Stellar parameters of LAMOST stars using SLAM (Zhang+, 2020) J/ApJS/251/15 : LAMOST-Kepler/K2 survey (LK-MRS) first year obs. (Zong+, 2020) J/other/RAA/21.292 : LAMOST Time-Domain survey, first results (Wang+, 2021) Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 I9 --- ObsID LAMOST observational ID 11- 18 I8 min LMJM Local Modified Julian Minute 20- 32 F13.5 d BJDmid Barycentric Julian Date of the middle of exposure 34- 38 I5 d LMJD Local Modified Julian Day (only used for spectral naming) 40- 59 A20 --- planid Plan ID 61- 62 I2 --- spid Spectrograph ID 64- 66 I3 --- fiber Fiber ID (fiberid) 68- 77 F10.6 deg RAdeg Right ascension (J2000) (ra) 79- 87 F9.6 deg DEdeg Declination (J2000) (dec) 89- 98 F10.6 --- SNRB ?=- S/N ratio of the blue arm (snr_B) 100- 109 F10.6 --- SNRR ?=- S/N ratio of the red arm (snr_R) 111- 120 F10.4 km/s RVobsB ?=- RV measured from blue arm spectra (rvobsB) 122- 130 F9.4 km/s e_RVobsB ?=- RVobsB uncertainty (rvobserr_B) 132- 141 F10.4 km/s RVabsB ?=- RV calibrated to Gaia eDR3 (rvabsB) 143- 151 F9.4 km/s e_RVabsB ?=- Total error of absolute RV (rverrabs_B) 153- 157 I5 K TeffB ?=- Effective temperature of the best template (rvteffB) 159- 167 F9.6 --- CCFmaxB ?=- CCF max value (ccfmax_B) 169- 178 F10.4 km/s RVobsR ?=- RV measured from red arm spectra (rvobsR) 180- 188 F9.4 km/s e_RVobsR ?=- RVobsR uncertainty (rvobserr_R) 190- 199 F10.4 km/s RVabsR ?=- RV calibrated to Gaia eDR3 (rvabsR) 201- 209 F9.4 km/s e_RVabsR ?=- Total error of absolute RV (rverrabs_R) 211- 215 I5 K TeffR ?=- Effective temperature of the best template (rvteffR) 217- 225 F9.6 --- CCFmaxR ?=- CCF max value (ccfmax_R) 227- 234 F8.6 --- PbpB8-0 ?=- PqΛ=8 with q=0 for the blue arm (pbB8_0) 236- 243 F8.6 --- PbpB8-16 ?=- PqΛ=8 with q=16 for the blue arm (pbB8_16) 245- 252 F8.6 --- PbpB8-50 ?=- PqΛ=8 with q=50 for the blue arm (pbB8_50) 254- 261 F8.6 --- PbpB8-84 ?=- PqΛ=8 with q=84 for the blue arm (pbB8_84) 263- 270 F8.6 --- PbpB8-100 ?=- PqΛ=8 with q=100 for the blue arm (pbB8_100) 272- 279 F8.6 --- PbpB16-0 ?=- PqΛ=16 with q=0 for the blue arm (pbB16_0) 281- 288 F8.6 --- PbpB16-16 ?=- PqΛ=16 with q=16 for the blue arm (pbB16_16) 290- 297 F8.6 --- PbpB16-50 ?=- PqΛ=16 with q=50 for the blue arm (pbB16_50) 299- 306 F8.6 --- PbpB16-84 ?=- PqΛ=16 with q=84 for the blue arm (pbB16_84) 308- 315 F8.6 --- PbpB16-100 ?=- PqΛ=16 with q=100 for the blue arm (pbB16_100) 317- 324 F8.6 --- PbpB32-0 ?=- PqΛ=32 with q=0 for the blue arm (pbB32_0) 326- 333 F8.6 --- PbpB32-16 ?=- PqΛ=32 with q=16 for the blue arm (pbB32_16) 335- 342 F8.6 --- PbpB32-50 ?=- PqΛ=32 with q=50 for the blue arm (pbB32_50) 344- 351 F8.6 --- PbpB32-84 ?=- PqΛ=32 with q=84 for the blue arm (pbB32_84) 353- 360 F8.6 --- PbpB32-100 ?=- PqΛ=32 with q=100 for the blue arm (pbB32_100) 362 I1 --- GoodB [0/1] True for good blue spectra (S/N>5) (pbflagB) 364- 367 I4 --- NbadB [0/9999] Number of bad pixels for the blue arm (npixbad_B) 369- 376 F8.6 --- PbpR8-0 ?=- PqΛ=8 with q=0 for the red arm (pbR8_0) 378- 385 F8.6 --- PbpR8-16 ?=- PqΛ=8 with q=16 for the red arm (pbR8_16) 387- 394 F8.6 --- PbpR8-50 ?=- PqΛ=8 with q=50 for the red arm (pbR8_50) 396- 403 F8.6 --- PbpR8-84 ?=- PqΛ=8 with q=84 for the red arm (pbR8_84) 405- 412 F8.6 --- PbpR8-100 ?=- PqΛ=8 with q=100 for the red arm (pbR8_100) 414- 421 F8.6 --- PbpR16-0 ?=- PqΛ=16 with q=0 for the red arm (pbR16_0) 423- 430 F8.6 --- PbpR16-16 ?=- PqΛ=16 with q=16 for the red arm (pbR16_16) 432- 439 F8.6 --- PbpR16-50 ?=- PqΛ=16 with q=50 for the red arm (pbR16_50) 441- 448 F8.6 --- PbpR16-84 ?=- PqΛ=16 with q=84 for the red arm (pbR16_84) 450- 457 F8.6 --- PbpR16-100 ?=- PqΛ=16 with q=100 for the red arm (pbR16_100) 459- 466 F8.6 --- PbpR32-0 ?=- PqΛ=32 with q=0 for the red arm (pbR32_0) 468- 475 F8.6 --- PbpR32-16 ?=- PqΛ=32 with q=16 for the red arm (pbR32_16) 477- 484 F8.6 --- PbpR32-50 ?=- PqΛ=32 with q=50 for the red arm (pbR32_50) 486- 493 F8.6 --- PbpR32-84 ?=- PqΛ=32 with q=84 for the red arm (pbR32_84) 495- 502 F8.6 --- PbpR32-100 ?=- PqΛ=32 with q=100 for the red arm (pbR32_100) 504 I1 --- GoodR [0/1] True for good red spectra (S/N>5) (pbflagR) 506- 509 I4 --- NbadR [0/9999] Number of bad pixels for the red arm (npixbad_R) 511- 519 F9.6 mag Gbp-Grp [-0.75/7.7]?=- Intrinsic color (GBP-GRP)0 (bprp0) -------------------------------------------------------------------------------- Acknowledgements: Bo Zhang [bozhang at nao.cas.cn] History: From electronic version of the journal
(End) Emmanuelle Perret [CDS] 03-Aug-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line