J/ApJS/261/8 BASS. XXIX. NIR view of broad-line regions (Ricci+, 2022)
BASS.
XXIX. The near-infrared view of the broad-line region (BLR): the effects
of obscuration in BLR characterization.
Ricci F., Treister E., Bauer F.E., Mejia-Restrepo J.E., Koss M.J.,
den Brok J.S., Balokovic M., Bar R., Bessiere P., Caglar T., Harrison F.,
Ichikawa K., Kakkad D., Lamperti I., Mushotzky R., Oh K., Powell M.C.,
Privon G.C., Ricci C., Riffel R., Rojas A.F., Sani E., Smith K.L.,
Stern D., Trakhtenbrot B., Urry C.M., Veilleux S.
<Astrophys. J. Suppl. Ser., 261, 8 (2022)>
=2022ApJS..261....8R 2022ApJS..261....8R
ADC_Keywords: Active gal. nuclei; Galaxies, Seyfert; Spectra, infrared;
X-ray sources; Surveys
Keywords: Active galactic nuclei ; High energy astrophysics ;
X-ray active galactic nuclei ; Active galaxies
Abstract:
Virial black hole (BH) mass (MBH) determination directly involves
knowing the broad-line region (BLR) clouds' velocity distribution,
their distance from the central supermassive BH (RBLR), and the virial
factor (f). Understanding whether biases arise in MBH estimation with
increasing obscuration is possible only by studying a large (N>100)
statistical sample of obscuration-unbiased (hard) X-ray-selected
active galactic nuclei (AGNs) in the rest-frame near-infrared
(0.8-2.5µm) since it penetrates deeper into the BLR than the
optical. We present a detailed analysis of 65 local Burst Alert
Telescope (BAT) selected Seyfert galaxies observed with Magellan/FIRE.
Adding these to the near-infrared BAT AGN spectroscopic survey
database, we study a total of 314 unique near-infrared spectra. While
the FWHMs of Hα and near-infrared broad lines (HeI, Paβ,
Paα) remain unbiased to either BLR extinction or X-ray
obscuration, the Hα broad-line luminosity is suppressed when
NH≳1021cm-2, systematically underestimating MBH by
0.23-0.46dex. Near-infrared line luminosities should be preferred to
Hα until NH<1022cm-2, while at higher obscuration a
less-biased RBLR proxy should be adopted. We estimate f for Seyfert 1
and 2 using two obscuration-unbiased MBH measurements, i.e., the
stellar velocity dispersion and a BH mass prescription based on
near-infrared and X-ray, and find that the virial factors do not
depend on the redshift or obscuration, but some broad lines show a
mild anticorrelation with MBH. Our results show the critical impact
obscuration can have on BLR characterization and the importance of the
near-infrared and X-rays for a less-biased view of the BLR.
Description:
Here we present the NIR spectroscopic data (PI: E. Treister, F. Ricci,
M. Balokovic) obtained at Magellan using the Folded-port InfraRed
Echellette (FIRE). The Magellan/FIRE sample was selected from the hard
X-ray (14-195keV) 70 months catalog (Baumgartner+ 2013, J/ApJS/207/19).
Some sources are also included in the BAT AGN Spectroscopic Survey
(BASS) NIR DR1 (Lamperti+ 2017, J/MNRAS/467/540), BASS NIR DR2
(den Brok+ 2022, J/ApJS/261/7), and the latest 105 months Swift/BAT
(Oh+ 2018, J/ApJS/235/4) catalogs.
The 65 NIR 0.8-2.5um spectra were observed using the FIRE instrument
in the high-resolution echelle mode in four visiting runs carried out
between 2018 April and 2019 April. FIRE is a dual-mode IR spectrometer
mounted at the Magellan Baade telescope at Las Campanas Observatory
(LCO), Chile. See Table 1.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 94 65 Magellan/FIRE observation log
tablea1.dat 105 65 Broad line measurements of the HeI and Paγ
tablea2.dat 61 65 Broad line measurements of the Paβ
tablea3.dat 63 65 Broad line measurements of the Paα
tableb1.dat 101 88 Physical properties of the sample having both NIR
reliable broad line detection and optical stellar
velocity dispersion measurements available inside
the BAT AGN Spectroscopic Survey (BASS)
--------------------------------------------------------------------------------
See also:
VII/233 : The 2MASS Extended sources (IPAC/UMass, 2003-2006)
J/ApJ/640/579 : Near-infrared spectra of 27 SDSS quasars (Glikman+, 2006)
J/ApJ/670/92 : New sample of low-mass black holes in AGN (Greene+, 2007)
J/ApJ/693/1713 : Spectroscopy of X-ray sources in ECDF-S (Treister+, 2009)
J/A+A/512/A34 : XMM-COSMOS Type 1 AGNs (Lusso+, 2010)
J/ApJ/739/57 : Ultra hard X-ray AGNs in the Swift/BAT survey (Koss+, 2011)
J/ApJS/201/29 : Velocity dispersions in active galaxies (Harris+, 2012)
J/ApJS/207/19 : Hard X-ray survey from Swift-BAT 6yrs (Baumgartner+, 2013)
J/ApJ/775/116 : z<0.06 active BH galaxies from SDSS-DR8 (Reines+, 2013)
J/ApJ/813/82 : z<0.06 broad-line AGN emission-line measures (Reines+, 2015)
J/ApJ/815/L13 : Compton-thick AGNs from 70-month Swift/BAT (Ricci+, 2015)
J/MNRAS/446/2823 : CO and CaT derived sigma in spiral galaxies (Riffel+, 2015)
J/ApJ/805/96 : SDSS-RM project: velocity dispersions of QSOs (Shen+, 2015)
J/ApJ/831/7 : SDSS-RM project: peak velocities of QSOs (Shen+, 2016)
J/ApJ/831/134 : BH masses & host galaxy disp. veloc. (van den Bosch, 2016)
J/A+A/597/A48 : Stellar kinematics in CALIFA survey (Falcon-Barroso+, 2017)
J/ApJ/850/74 : Swift/BAT AGN Spectroscopic Survey. I. (Koss+, 2017)
J/MNRAS/467/540 : BASS. IV. NIR line & X-ray correlations (Lamperti+, 2017)
J/ApJS/233/17 : Swift/BAT AGN spectroscopic survey. V. X-ray (Ricci+, 2017)
J/ApJS/235/4 : 105-month Swift-BAT all-sky hard X-ray survey (Oh+, 2018)
J/A+A/642/A150 : Quasars as standard candles. III. (Lusso+, 2020)
J/ApJS/261/2 : BASS. XXII. Swift/BAT AGN Sp. Survey DR2 cat. (Koss+, 2022)
J/ApJS/261/4 : BASS. XXIV. DR2 sp. line measurements of AGNs (Oh+, 2022)
J/ApJS/261/7 : BASS. XXVIII. NIR DR2 sp. of Swift AGNs (den Brok+, 2022)
http://www.bass-survey.com/ : The BAT AGN Spectroscopic Survey home page
http://swift.gsfc.nasa.gov/results/bs105mon/ : Swift BAT 105-month survey
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 --- ID [7/1194] BAT identifier
in Baumgartner+, 2013, J/ApJS/207/19
6- 28 A23 --- Name Counterpart name
30- 34 A5 --- Class Optical Seyfert classification as defined by
Osterbrock (1981ApJ...249..462O 1981ApJ...249..462O)
36- 45 A10 "D/M/Y" Obs Observation date
47- 51 A5 s Exp Exposure time
52 A1 --- f_Exp [*] * = Readout mode used was Fowler 4
rather than SUTR
54- 57 F4.2 --- Air [1/1.62] Airmass at observation midpoint
59- 63 F5.2 mag Jmag [11.4/16.54] Apparent 2MASS J band Vega magnitude
65- 69 F5.3 --- z [0.003/0.21] Spectroscopic redshift
from the [OIII] BASS DR2
(Koss+, 2022, J/ApJS/261/2)
71- 73 F3.1 arcsec ASlit [0.4/0.6] Angular slit width
75- 78 F4.2 arcsec AAper [0.33/1.25] Angular aperture size
80- 83 F4.2 kpc PSlit [0.05/4.23] Physical slit width
85- 88 F4.2 kpc PAper [0.06/5.8] Physical aperture size
90- 94 F5.2 [10-7W] logL [41.55/45.23] log intrinsic 2-10keV luminosity
from Ricci+ 2017, J/ApJS/233/17 ;
in erg/s units
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 --- ID [7/1194] BAT identifier
in Baumgartner+, 2013, J/ApJS/207/19
6 I1 --- Flag [1/9] Quality fit flag (G1)
8- 15 E8.2 cW/m2/nm Noise [2.8e-18/4.3e-16] Noise measured in
the continuum; in erg/s/cm2/s/Å
17- 24 F8.4 10-14mW/m2 HeI [-13.62/134.17] HeI 1.083um flux;
in 10-14erg/s/cm2 (G2)
26- 31 F6.4 10-14mW/m2 e_HeI [0.0025/7]? Uncertainty in HeI
33- 40 F8.4 10-14mW/m2 Pag [-19.6/77.53] Paschen γ flux;
in 10-14erg/s/cm2 (G2)
42- 47 F6.4 10-14mW/m2 e_Pag [0.0026/2.3]? Uncertainty in Pag
49- 55 F7.2 km/s FWHM-HeI [1297/8790]? HeI 1.083um FWHM line width
57- 63 F7.2 km/s e_FWHM-HeI [0.01/1959]? Uncertainty in FWHM-HeI
65- 71 F7.1 km/s FWHM-Pag [1289/11552]? Paschen γ FWHM line
width
73- 78 F6.1 km/s e_FWHM-Pag [2.8/1939]? Uncertainty in FWHM-Pag
80- 86 F7.1 km/s Delv-HeI [-1000/1000]? HeI 1.083um velocity shift
88- 92 F5.1 km/s e_Delv-HeI [1.3/400]? Uncertainty in DelV-HeI
94- 99 F6.1 km/s Delv-Pag [-685/1000]? Paschen γ velocity
shift
101-105 F5.1 km/s e_Delv-Pag [2.3/232]? Uncertainty in DelV-Pag
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 --- ID [7/1194] BAT identifier
in Baumgartner+, 2013, J/ApJS/207/19
6- 6 I1 --- Flag-Pab [1/9] Quality fit flag (G1)
8- 15 E8.2 cW/m2/nm Noise-Pab [2.7e-18/1.6e-15] Noise measured in
the continuum; erg/s/cm2/s/Å
17- 26 F10.4 10-14mW/m2 Pab [-3553/81] Paschen β flux;
10-14erg/s/cm2 (G2)
28- 33 F6.4 10-14mW/m2 e_Pab [0.0035/8.5]? Uncertainty in Pab
35- 40 F6.1 km/s FWHM-Pab [1291/8229]? Paschen β FWHM line
width
42- 47 F6.1 km/s e_FWHM-Pab [8.4/1175]? Uncertainty in FWHM-Pab
49- 55 F7.1 km/s Delv-Pab [-1014/986]? Paschen β velocity
shift
57- 61 F5.1 km/s e_Delv-Pab [2.1/187]? Uncertainty in Delv-Pab
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 --- ID [7/1194] BAT identifier
in Baumgartner+, 2013, J/ApJS/207/19
6- 6 I1 --- Flag-Paa [1/9] Quality fit flag (G1)
8- 15 E8.2 cW/m2/nm Noise-Paa [1.3e-18/2.3e-16] Noise measured in the
continuum; erg/s/cm2/s/Å
17- 26 F10.4 10-14mW/m2 Paa [-3486/226] Paschen α flux;
10-14erg/s/cm2 (G2)
28- 33 F6.4 10-14mW/m2 e_Paa [0.004/1.2]? Uncertainty in Paa
35- 42 F8.2 km/s FWHM-Paa [1293/11907]? Paschen α FWHM line
width
44- 49 F6.2 km/s e_FWHM-Paa [0.04/815]? Uncertainty in FWHM-Paa
51- 57 F7.1 km/s Delv-Paa [-1000/937]? Paschen α velocity
shift
59- 63 F5.1 km/s e_Delv-Paa [0/298]? Uncertainty in Delv-Paa
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 4 I4 --- ID [10/1604] BAT identifier
in Oh+, 2018, J/ApJS/235/4
6- 8 F3.1 --- Class [1/2] Optical Seyfert classification
10- 17 F8.3 km/s FWHM-HeI [1234/6377]? HeI FWHM line width (1)
19- 25 F7.3 km/s e_FWHM-HeI [0.01/347]? Uncertainty in FWHM-HeI
27- 32 F6.1 km/s FWHM-Pab [1259/6956]? Paβ FWHM line width (1)
34- 38 F5.1 km/s e_FWHM-Pab [1/297]? Uncertainty in FWHM-Pab
40- 46 F7.2 km/s FWHM-Paa [1280/8089]? Paα FWHM line width (1)
48- 53 F6.2 km/s e_FWHM-Paa [0.13/314]? Uncertainty in FWHM-Paa
55- 62 F8.3 km/s FWHM-NIR [1234/6824] NIR FWHM line width (1)
64- 70 F7.3 km/s e_FWHM-NIR [0.01/347] Uncertainty in FWHM-NIR
72- 76 F5.3 [Msun] logM [5.5/8.83] log black hole mass (2)
78- 82 F5.3 [Msun] e_logM [0.023/0.09] Uncertainty in logM
84- 89 F6.3 [-] logf [-0.87/2.26] log virial factor (3)
91- 95 F5.3 [-] e_logf [0.057/0.53] Uncertainty in logf
97-101 F5.2 [cm-2] logNHI [20/24.32]? log HI column density (4)
--------------------------------------------------------------------------------
Note (1): From either BASS DR1 (Lamperti+ 2017, J/MNRAS/467/540),
DR2 (den Brok+ 2022, J/ApJS/261/7) or from this work, i.e.,
FIRE spectra.
Note (2): The mixed NIR+LX-based BH mass, calculated using the FWHM-NIR.
Note (3): Computed as the ratio of the σ*-based BH mass with velocity
dispersions from the BASS DR2 (either from Koss+ 2022, J/ApJS/261/2
or Caglar et al., in prep.) and M(NIR).
Note (4): Derived from X-ray spectral fitting (Ricci+ 2017, J/ApJS/233/17).
--------------------------------------------------------------------------------
Global notes:
Note (G1): We then visually inspected all the fits and assigned quality flags,
following the classification nomenclature of the first BASS
paper (Koss+ 2017, J/ApJ/850/74). Flas as follows:
1 = small residuals and very good fits;
2 = fits are not perfect, but still acceptable;
3 = not completely satisfactory fits for high S/N sources due to
the presence of either absorption lines, additional
components in the fit or structure in the residuals, making
the fit decomposition more uncertain;
4 = spectra with low S/N and/or strongly affected by telluric
residuals, the best-fit NLR and BLR estimates are highly uncertain;
9 = no emission line is detected.
Note (G2): Negative values indicate an upper flux limit. The upper limits on
the broad line fluxes have been computed using a FWHM=4200km/s.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Koss et al. Paper I. 2017ApJ...850...74K 2017ApJ...850...74K Cat. J/ApJ/850/74
Berney et al. Paper II. 2015MNRAS.454.3622B 2015MNRAS.454.3622B
Oh et al. Paper III. 2017MNRAS.464.1466O 2017MNRAS.464.1466O
Lamperti et al. Paper IV. 2017MNRAS.467..540L 2017MNRAS.467..540L Cat. J/MNRAS/467/540
Ricci et al. Paper V. 2017ApJS..233...17R 2017ApJS..233...17R Cat. J/ApJS/233/17
Trakhtenbrot et al. Paper VI. 2017MNRAS.470..800T 2017MNRAS.470..800T
Ricci et al. Paper VII. 2017Natur.549..488R 2017Natur.549..488R
Shimizu et al. Paper VIII. 2018ApJ...856..154S 2018ApJ...856..154S
Powell et al. Paper IX. 2018ApJ...858..110P 2018ApJ...858..110P
Oh et al. Paper X. 2018ApJS..235....4O 2018ApJS..235....4O Cat. J/ApJS/235/4
Ichikawa et al. Paper XI. 2019ApJ...870...31I 2019ApJ...870...31I Cat. J/ApJ/870/31
Ricci et al. Paper XII. 2018MNRAS.480.1819R 2018MNRAS.480.1819R
Bar et al. Paper XIII. 2019MNRAS.489.3073B 2019MNRAS.489.3073B
Koss et al. Paper XIV. 2018Natur.563..214K 2018Natur.563..214K
Smith et al. Paper XV. 2020MNRAS.492.4216S 2020MNRAS.492.4216S
Paliya et al. Paper XVI. 2019ApJ...881..154P 2019ApJ...881..154P Cat. J/ApJ/881/154
Baek et al. Paper XVII. 2019MNRAS.488.4317B 2019MNRAS.488.4317B
Liu et al. Paper XVIII. 2020ApJ...896..122L 2020ApJ...896..122L
Rojas et al. Paper XIX. 2020MNRAS.491.5867R 2020MNRAS.491.5867R
Koss et al. Paper XX. 2021ApJS..252...29K 2021ApJS..252...29K Cat. J/ApJS/252/29
Koss et al. Paper XXI. 2022ApJS..261....1K 2022ApJS..261....1K
Koss et al. Paper XXII. 2022ApJS..261....2K 2022ApJS..261....2K Cat. J/ApJS/261/2
Pfeifle et al. Paper XXIII. 2022ApJS..261....3P 2022ApJS..261....3P
Oh et al. Paper XXIV. 2022ApJS..261....4O 2022ApJS..261....4O Cat. J/ApJS/261/4
Mejia-Restrepo et al. Paper XXV. 2022ApJS..261....5M 2022ApJS..261....5M Cat. J/ApJS/261/5
Koss et al. Paper XXVI. 2022ApJS..261....6K 2022ApJS..261....6K Cat. J/ApJS/261/6
Gupta et al. Paper XXVII. 2021MNRAS.504..428G 2021MNRAS.504..428G
den Brok et al. Paper XXVIII. 2022ApJS..261....7D 2022ApJS..261....7D Cat. J/ApJS/261/7
Ricci et al. Paper XXIX. 2022ApJS..261....8R 2022ApJS..261....8R This catalog
Ananna et al. Paper XXX. 2022ApJS..261....9A 2022ApJS..261....9A
Kakkad et al. Paper XXXI. 2022MNRAS.511.2105K 2022MNRAS.511.2105K
Kawamuro et al. Paper XXXII. 2022ApJ...938...87K 2022ApJ...938...87K
Marcotulli et al. Paper XXXIII. 2022ApJ...940...77M 2022ApJ...940...77M Cat. J/ApJ/940/77
Kawamuro et al. Paper XXXIV. 2023ApJS..269...24K 2023ApJS..269...24K Cat. J/ApJS/269/24
Caglar et al. Paper XXXV. 2023ApJ...956...60C 2023ApJ...956...60C
Powell et al. Paper XXXVI. 2022ApJ...938...77P 2022ApJ...938...77P
Ricci et al. Paper XXXVII. 2022ApJ...938...67R 2022ApJ...938...67R
Ananna et al. Paper XXXVIII. 2022ApJ...939L..13A 2022ApJ...939L..13A
Temple et al. Paper XXXIX. 2023MNRAS.518.2938T 2023MNRAS.518.2938T
Tortosa et al. Paper XL. 2023MNRAS.526.1687T 2023MNRAS.526.1687T
Ricci et al. Paper XLII. 2023ApJ...959...27R 2023ApJ...959...27R
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 06-Sep-2022