J/ApJS/261/8      BASS. XXIX. NIR view of broad-line regions      (Ricci+, 2022)

BASS. XXIX. The near-infrared view of the broad-line region (BLR): the effects of obscuration in BLR characterization. Ricci F., Treister E., Bauer F.E., Mejia-Restrepo J.E., Koss M.J., den Brok J.S., Balokovic M., Bar R., Bessiere P., Caglar T., Harrison F., Ichikawa K., Kakkad D., Lamperti I., Mushotzky R., Oh K., Powell M.C., Privon G.C., Ricci C., Riffel R., Rojas A.F., Sani E., Smith K.L., Stern D., Trakhtenbrot B., Urry C.M., Veilleux S. <Astrophys. J. Suppl. Ser., 261, 8 (2022)> =2022ApJS..261....8R 2022ApJS..261....8R
ADC_Keywords: Active gal. nuclei; Galaxies, Seyfert; Spectra, infrared; X-ray sources; Surveys Keywords: Active galactic nuclei ; High energy astrophysics ; X-ray active galactic nuclei ; Active galaxies Abstract: Virial black hole (BH) mass (MBH) determination directly involves knowing the broad-line region (BLR) clouds' velocity distribution, their distance from the central supermassive BH (RBLR), and the virial factor (f). Understanding whether biases arise in MBH estimation with increasing obscuration is possible only by studying a large (N>100) statistical sample of obscuration-unbiased (hard) X-ray-selected active galactic nuclei (AGNs) in the rest-frame near-infrared (0.8-2.5µm) since it penetrates deeper into the BLR than the optical. We present a detailed analysis of 65 local Burst Alert Telescope (BAT) selected Seyfert galaxies observed with Magellan/FIRE. Adding these to the near-infrared BAT AGN spectroscopic survey database, we study a total of 314 unique near-infrared spectra. While the FWHMs of Hα and near-infrared broad lines (HeI, Paβ, Paα) remain unbiased to either BLR extinction or X-ray obscuration, the Hα broad-line luminosity is suppressed when NH≳1021cm-2, systematically underestimating MBH by 0.23-0.46dex. Near-infrared line luminosities should be preferred to Hα until NH<1022cm-2, while at higher obscuration a less-biased RBLR proxy should be adopted. We estimate f for Seyfert 1 and 2 using two obscuration-unbiased MBH measurements, i.e., the stellar velocity dispersion and a BH mass prescription based on near-infrared and X-ray, and find that the virial factors do not depend on the redshift or obscuration, but some broad lines show a mild anticorrelation with MBH. Our results show the critical impact obscuration can have on BLR characterization and the importance of the near-infrared and X-rays for a less-biased view of the BLR. Description: Here we present the NIR spectroscopic data (PI: E. Treister, F. Ricci, M. Balokovic) obtained at Magellan using the Folded-port InfraRed Echellette (FIRE). The Magellan/FIRE sample was selected from the hard X-ray (14-195keV) 70 months catalog (Baumgartner+ 2013, J/ApJS/207/19). Some sources are also included in the BAT AGN Spectroscopic Survey (BASS) NIR DR1 (Lamperti+ 2017, J/MNRAS/467/540), BASS NIR DR2 (den Brok+ 2022, J/ApJS/261/7), and the latest 105 months Swift/BAT (Oh+ 2018, J/ApJS/235/4) catalogs. The 65 NIR 0.8-2.5um spectra were observed using the FIRE instrument in the high-resolution echelle mode in four visiting runs carried out between 2018 April and 2019 April. FIRE is a dual-mode IR spectrometer mounted at the Magellan Baade telescope at Las Campanas Observatory (LCO), Chile. See Table 1. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 94 65 Magellan/FIRE observation log tablea1.dat 105 65 Broad line measurements of the HeI and Paγ tablea2.dat 61 65 Broad line measurements of the Paβ tablea3.dat 63 65 Broad line measurements of the Paα tableb1.dat 101 88 Physical properties of the sample having both NIR reliable broad line detection and optical stellar velocity dispersion measurements available inside the BAT AGN Spectroscopic Survey (BASS) -------------------------------------------------------------------------------- See also: VII/233 : The 2MASS Extended sources (IPAC/UMass, 2003-2006) J/ApJ/640/579 : Near-infrared spectra of 27 SDSS quasars (Glikman+, 2006) J/ApJ/670/92 : New sample of low-mass black holes in AGN (Greene+, 2007) J/ApJ/693/1713 : Spectroscopy of X-ray sources in ECDF-S (Treister+, 2009) J/A+A/512/A34 : XMM-COSMOS Type 1 AGNs (Lusso+, 2010) J/ApJ/739/57 : Ultra hard X-ray AGNs in the Swift/BAT survey (Koss+, 2011) J/ApJS/201/29 : Velocity dispersions in active galaxies (Harris+, 2012) J/ApJS/207/19 : Hard X-ray survey from Swift-BAT 6yrs (Baumgartner+, 2013) J/ApJ/775/116 : z<0.06 active BH galaxies from SDSS-DR8 (Reines+, 2013) J/ApJ/813/82 : z<0.06 broad-line AGN emission-line measures (Reines+, 2015) J/ApJ/815/L13 : Compton-thick AGNs from 70-month Swift/BAT (Ricci+, 2015) J/MNRAS/446/2823 : CO and CaT derived sigma in spiral galaxies (Riffel+, 2015) J/ApJ/805/96 : SDSS-RM project: velocity dispersions of QSOs (Shen+, 2015) J/ApJ/831/7 : SDSS-RM project: peak velocities of QSOs (Shen+, 2016) J/ApJ/831/134 : BH masses & host galaxy disp. veloc. (van den Bosch, 2016) J/A+A/597/A48 : Stellar kinematics in CALIFA survey (Falcon-Barroso+, 2017) J/ApJ/850/74 : Swift/BAT AGN Spectroscopic Survey. I. (Koss+, 2017) J/MNRAS/467/540 : BASS. IV. NIR line & X-ray correlations (Lamperti+, 2017) J/ApJS/233/17 : Swift/BAT AGN spectroscopic survey. V. X-ray (Ricci+, 2017) J/ApJS/235/4 : 105-month Swift-BAT all-sky hard X-ray survey (Oh+, 2018) J/A+A/642/A150 : Quasars as standard candles. III. (Lusso+, 2020) J/ApJS/261/2 : BASS. XXII. Swift/BAT AGN Sp. Survey DR2 cat. (Koss+, 2022) J/ApJS/261/4 : BASS. XXIV. DR2 sp. line measurements of AGNs (Oh+, 2022) J/ApJS/261/7 : BASS. XXVIII. NIR DR2 sp. of Swift AGNs (den Brok+, 2022) http://www.bass-survey.com/ : The BAT AGN Spectroscopic Survey home page http://swift.gsfc.nasa.gov/results/bs105mon/ : Swift BAT 105-month survey Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 I4 --- ID [7/1194] BAT identifier in Baumgartner+, 2013, J/ApJS/207/19 6- 28 A23 --- Name Counterpart name 30- 34 A5 --- Class Optical Seyfert classification as defined by Osterbrock (1981ApJ...249..462O 1981ApJ...249..462O) 36- 45 A10 "D/M/Y" Obs Observation date 47- 51 A5 s Exp Exposure time 52 A1 --- f_Exp [*] * = Readout mode used was Fowler 4 rather than SUTR 54- 57 F4.2 --- Air [1/1.62] Airmass at observation midpoint 59- 63 F5.2 mag Jmag [11.4/16.54] Apparent 2MASS J band Vega magnitude 65- 69 F5.3 --- z [0.003/0.21] Spectroscopic redshift from the [OIII] BASS DR2 (Koss+, 2022, J/ApJS/261/2) 71- 73 F3.1 arcsec ASlit [0.4/0.6] Angular slit width 75- 78 F4.2 arcsec AAper [0.33/1.25] Angular aperture size 80- 83 F4.2 kpc PSlit [0.05/4.23] Physical slit width 85- 88 F4.2 kpc PAper [0.06/5.8] Physical aperture size 90- 94 F5.2 [10-7W] logL [41.55/45.23] log intrinsic 2-10keV luminosity from Ricci+ 2017, J/ApJS/233/17 ; in erg/s units -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 I4 --- ID [7/1194] BAT identifier in Baumgartner+, 2013, J/ApJS/207/19 6 I1 --- Flag [1/9] Quality fit flag (G1) 8- 15 E8.2 cW/m2/nm Noise [2.8e-18/4.3e-16] Noise measured in the continuum; in erg/s/cm2/s/Å 17- 24 F8.4 10-14mW/m2 HeI [-13.62/134.17] HeI 1.083um flux; in 10-14erg/s/cm2 (G2) 26- 31 F6.4 10-14mW/m2 e_HeI [0.0025/7]? Uncertainty in HeI 33- 40 F8.4 10-14mW/m2 Pag [-19.6/77.53] Paschen γ flux; in 10-14erg/s/cm2 (G2) 42- 47 F6.4 10-14mW/m2 e_Pag [0.0026/2.3]? Uncertainty in Pag 49- 55 F7.2 km/s FWHM-HeI [1297/8790]? HeI 1.083um FWHM line width 57- 63 F7.2 km/s e_FWHM-HeI [0.01/1959]? Uncertainty in FWHM-HeI 65- 71 F7.1 km/s FWHM-Pag [1289/11552]? Paschen γ FWHM line width 73- 78 F6.1 km/s e_FWHM-Pag [2.8/1939]? Uncertainty in FWHM-Pag 80- 86 F7.1 km/s Delv-HeI [-1000/1000]? HeI 1.083um velocity shift 88- 92 F5.1 km/s e_Delv-HeI [1.3/400]? Uncertainty in DelV-HeI 94- 99 F6.1 km/s Delv-Pag [-685/1000]? Paschen γ velocity shift 101-105 F5.1 km/s e_Delv-Pag [2.3/232]? Uncertainty in DelV-Pag -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 I4 --- ID [7/1194] BAT identifier in Baumgartner+, 2013, J/ApJS/207/19 6- 6 I1 --- Flag-Pab [1/9] Quality fit flag (G1) 8- 15 E8.2 cW/m2/nm Noise-Pab [2.7e-18/1.6e-15] Noise measured in the continuum; erg/s/cm2/s/Å 17- 26 F10.4 10-14mW/m2 Pab [-3553/81] Paschen β flux; 10-14erg/s/cm2 (G2) 28- 33 F6.4 10-14mW/m2 e_Pab [0.0035/8.5]? Uncertainty in Pab 35- 40 F6.1 km/s FWHM-Pab [1291/8229]? Paschen β FWHM line width 42- 47 F6.1 km/s e_FWHM-Pab [8.4/1175]? Uncertainty in FWHM-Pab 49- 55 F7.1 km/s Delv-Pab [-1014/986]? Paschen β velocity shift 57- 61 F5.1 km/s e_Delv-Pab [2.1/187]? Uncertainty in Delv-Pab -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 I4 --- ID [7/1194] BAT identifier in Baumgartner+, 2013, J/ApJS/207/19 6- 6 I1 --- Flag-Paa [1/9] Quality fit flag (G1) 8- 15 E8.2 cW/m2/nm Noise-Paa [1.3e-18/2.3e-16] Noise measured in the continuum; erg/s/cm2/s/Å 17- 26 F10.4 10-14mW/m2 Paa [-3486/226] Paschen α flux; 10-14erg/s/cm2 (G2) 28- 33 F6.4 10-14mW/m2 e_Paa [0.004/1.2]? Uncertainty in Paa 35- 42 F8.2 km/s FWHM-Paa [1293/11907]? Paschen α FWHM line width 44- 49 F6.2 km/s e_FWHM-Paa [0.04/815]? Uncertainty in FWHM-Paa 51- 57 F7.1 km/s Delv-Paa [-1000/937]? Paschen α velocity shift 59- 63 F5.1 km/s e_Delv-Paa [0/298]? Uncertainty in Delv-Paa -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 I4 --- ID [10/1604] BAT identifier in Oh+, 2018, J/ApJS/235/4 6- 8 F3.1 --- Class [1/2] Optical Seyfert classification 10- 17 F8.3 km/s FWHM-HeI [1234/6377]? HeI FWHM line width (1) 19- 25 F7.3 km/s e_FWHM-HeI [0.01/347]? Uncertainty in FWHM-HeI 27- 32 F6.1 km/s FWHM-Pab [1259/6956]? Paβ FWHM line width (1) 34- 38 F5.1 km/s e_FWHM-Pab [1/297]? Uncertainty in FWHM-Pab 40- 46 F7.2 km/s FWHM-Paa [1280/8089]? Paα FWHM line width (1) 48- 53 F6.2 km/s e_FWHM-Paa [0.13/314]? Uncertainty in FWHM-Paa 55- 62 F8.3 km/s FWHM-NIR [1234/6824] NIR FWHM line width (1) 64- 70 F7.3 km/s e_FWHM-NIR [0.01/347] Uncertainty in FWHM-NIR 72- 76 F5.3 [Msun] logM [5.5/8.83] log black hole mass (2) 78- 82 F5.3 [Msun] e_logM [0.023/0.09] Uncertainty in logM 84- 89 F6.3 [-] logf [-0.87/2.26] log virial factor (3) 91- 95 F5.3 [-] e_logf [0.057/0.53] Uncertainty in logf 97-101 F5.2 [cm-2] logNHI [20/24.32]? log HI column density (4) -------------------------------------------------------------------------------- Note (1): From either BASS DR1 (Lamperti+ 2017, J/MNRAS/467/540), DR2 (den Brok+ 2022, J/ApJS/261/7) or from this work, i.e., FIRE spectra. Note (2): The mixed NIR+LX-based BH mass, calculated using the FWHM-NIR. Note (3): Computed as the ratio of the σ*-based BH mass with velocity dispersions from the BASS DR2 (either from Koss+ 2022, J/ApJS/261/2 or Caglar et al., in prep.) and M(NIR). Note (4): Derived from X-ray spectral fitting (Ricci+ 2017, J/ApJS/233/17). -------------------------------------------------------------------------------- Global notes: Note (G1): We then visually inspected all the fits and assigned quality flags, following the classification nomenclature of the first BASS paper (Koss+ 2017, J/ApJ/850/74). Flas as follows: 1 = small residuals and very good fits; 2 = fits are not perfect, but still acceptable; 3 = not completely satisfactory fits for high S/N sources due to the presence of either absorption lines, additional components in the fit or structure in the residuals, making the fit decomposition more uncertain; 4 = spectra with low S/N and/or strongly affected by telluric residuals, the best-fit NLR and BLR estimates are highly uncertain; 9 = no emission line is detected. Note (G2): Negative values indicate an upper flux limit. The upper limits on the broad line fluxes have been computed using a FWHM=4200km/s. -------------------------------------------------------------------------------- History: From electronic version of the journal References: Koss et al. Paper I. 2017ApJ...850...74K 2017ApJ...850...74K Cat. J/ApJ/850/74 Berney et al. Paper II. 2015MNRAS.454.3622B 2015MNRAS.454.3622B Oh et al. Paper III. 2017MNRAS.464.1466O 2017MNRAS.464.1466O Lamperti et al. Paper IV. 2017MNRAS.467..540L 2017MNRAS.467..540L Cat. J/MNRAS/467/540 Ricci et al. Paper V. 2017ApJS..233...17R 2017ApJS..233...17R Cat. J/ApJS/233/17 Trakhtenbrot et al. Paper VI. 2017MNRAS.470..800T 2017MNRAS.470..800T Ricci et al. Paper VII. 2017Natur.549..488R 2017Natur.549..488R Shimizu et al. Paper VIII. 2018ApJ...856..154S 2018ApJ...856..154S Powell et al. Paper IX. 2018ApJ...858..110P 2018ApJ...858..110P Oh et al. Paper X. 2018ApJS..235....4O 2018ApJS..235....4O Cat. J/ApJS/235/4 Ichikawa et al. Paper XI. 2019ApJ...870...31I 2019ApJ...870...31I Cat. J/ApJ/870/31 Ricci et al. Paper XII. 2018MNRAS.480.1819R 2018MNRAS.480.1819R Bar et al. Paper XIII. 2019MNRAS.489.3073B 2019MNRAS.489.3073B Koss et al. Paper XIV. 2018Natur.563..214K 2018Natur.563..214K Smith et al. Paper XV. 2020MNRAS.492.4216S 2020MNRAS.492.4216S Paliya et al. Paper XVI. 2019ApJ...881..154P 2019ApJ...881..154P Cat. J/ApJ/881/154 Baek et al. Paper XVII. 2019MNRAS.488.4317B 2019MNRAS.488.4317B Liu et al. Paper XVIII. 2020ApJ...896..122L 2020ApJ...896..122L Rojas et al. Paper XIX. 2020MNRAS.491.5867R 2020MNRAS.491.5867R Koss et al. Paper XX. 2021ApJS..252...29K 2021ApJS..252...29K Cat. J/ApJS/252/29 Koss et al. Paper XXI. 2022ApJS..261....1K 2022ApJS..261....1K Koss et al. Paper XXII. 2022ApJS..261....2K 2022ApJS..261....2K Cat. J/ApJS/261/2 Pfeifle et al. Paper XXIII. 2022ApJS..261....3P 2022ApJS..261....3P Oh et al. Paper XXIV. 2022ApJS..261....4O 2022ApJS..261....4O Cat. J/ApJS/261/4 Mejia-Restrepo et al. Paper XXV. 2022ApJS..261....5M 2022ApJS..261....5M Cat. J/ApJS/261/5 Koss et al. Paper XXVI. 2022ApJS..261....6K 2022ApJS..261....6K Cat. J/ApJS/261/6 Gupta et al. Paper XXVII. 2021MNRAS.504..428G 2021MNRAS.504..428G den Brok et al. Paper XXVIII. 2022ApJS..261....7D 2022ApJS..261....7D Cat. J/ApJS/261/7 Ricci et al. Paper XXIX. 2022ApJS..261....8R 2022ApJS..261....8R This catalog Ananna et al. Paper XXX. 2022ApJS..261....9A 2022ApJS..261....9A Kakkad et al. Paper XXXI. 2022MNRAS.511.2105K 2022MNRAS.511.2105K Kawamuro et al. Paper XXXII. 2022ApJ...938...87K 2022ApJ...938...87K Marcotulli et al. Paper XXXIII. 2022ApJ...940...77M 2022ApJ...940...77M Cat. J/ApJ/940/77 Kawamuro et al. Paper XXXIV. 2023ApJS..269...24K 2023ApJS..269...24K Cat. J/ApJS/269/24 Caglar et al. Paper XXXV. 2023ApJ...956...60C 2023ApJ...956...60C Powell et al. Paper XXXVI. 2022ApJ...938...77P 2022ApJ...938...77P Ricci et al. Paper XXXVII. 2022ApJ...938...67R 2022ApJ...938...67R Ananna et al. Paper XXXVIII. 2022ApJ...939L..13A 2022ApJ...939L..13A Temple et al. Paper XXXIX. 2023MNRAS.518.2938T 2023MNRAS.518.2938T Tortosa et al. Paper XL. 2023MNRAS.526.1687T 2023MNRAS.526.1687T Ricci et al. Paper XLII. 2023ApJ...959...27R 2023ApJ...959...27R
(End) Prepared by [AAS], Emmanuelle Perret [CDS] 06-Sep-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line