J/MNRAS/387/871 SiVI atomic data and broadening effect (Hamdi+, 2008)
Atomic data and electron-impact broadening effect in DO white dwarf
atmospheres: Si VI.
Hamdi R., Nessib N.B., Milovanovic N., Popovic L.C., Dimitrijevic M.S.,
Sahal-Brechot S.
<Mon. Not. R. Astron. Soc., 387, 871-882 (2008)>
=2008MNRAS.387..871H 2008MNRAS.387..871H
ADC_Keywords: Atomic physics
Keywords: atomic data - atomic processes - line: formation -
stars: atmospheres - white dwarfs
Abstract:
Energy levels, electric dipole transition probabilities and oscillator
strengths in five times ionized silicon have been calculated in
intermediate coupling. The present calculations were carried out with
the general purpose atomic structure program superstructure. The
relativistic corrections to the non-relativistic Hamiltonian are taken
into account through the Breit-Pauli approximation. We have also
introduced a semi-empirical correction [term energy corrections (TEC)]
for the calculation of the energy levels. These atomic data are used
to provide semiclassical electron-, proton- and ionized helium-impact
linewidths and shifts for 15 Si VI multiplet. Calculated results have
been used to consider the influence of Stark broadening for DO white
dwarf atmospheric conditions.
Description:
In this work, the calculations were carried out with the general
purpose atomic structure program superstructure (Eissner, Jones &
Nussbaumer, 1974, Comput. Phys. Commun., 8, 270), as modified by
Nussbaumer & Storey (1978A&A....64..139N 1978A&A....64..139N). The atomic model used to
calculate energies of terms or levels and transition probabilities
include 26 configurations: 2s22p5, 2s2p6, 2s22p43l,
2s22p44l, 2s22p45l, 2s22p46l, 2s2p53l and 2p63l
(l≤n-1).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 53 117 Energy levels for SiVI
table3.dat 82 287 Transition probabilities, calculated wavelengths,
and weighted oscillator strengths for
SiVI spectrum
table4.dat 112 75 Electron-, proton- and singly charged
helium-impact broadening parameters for SiVI
lines calculated using superstructure oscillator
strength, for a perturber density of 1017cm-3
and temperature of 50000 to 800000K
--------------------------------------------------------------------------------
See also:
J/A+AS/105/245 : Stark broadening AlXI and SiXII (Dimitrijevic+ 1994)
J/A+AS/129/155 : SiXI + SiXIII lines Stark broadening (Dimitrijevic+ 1998)
J/A+A/423/397 : Stark broadening of SiV (Ben Nessib+, 2004)
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- Level [1,117] Level number
5- 18 A14 --- Conf Configuration
19- 25 A7 --- LS LS term (o designation odd level)
27- 29 A3 --- J J value of the level
31- 37 I7 cm-1 E9conf Energy level calculated with
nine-configuration model
39- 45 I7 cm-1 E26conf Energy level calculated with
26-configuration model
47- 53 I7 cm-1 ENIST ? Energy level from NIST
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 --- i Transition lower level
3 A1 --- --- [-]
4- 5 I2 --- j Transition upper level
7- 14 F8.3 0.1nm lambda Wavelength
16- 24 E9.4 s-1 Aij Present work transition probability value
26- 34 E9.4 s-1 AijFF ? FF transition probability value (1)
36- 43 E8.3 s-1 AijNIST ? NIST transition probability value
45- 53 E9.4 --- gf Present work weighted oscillator strength
55- 63 E9.4 --- gfFF ? FF weighted oscillator strength (1)
65- 73 E9.4 --- gfNIST ? NIST weighted oscillator strength
75- 82 E8.3 --- gfCT ? CT weighted oscillator strength (2)
--------------------------------------------------------------------------------
Note (1): From Froese Fischer & Tachiev, 2004, At. Data Nucl. Data Tables, 87, 1
Note (2): From Coutinho & Trigueiros, 1999, Cat. J/ApJS/121/591
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- Trans Transition
15- 20 F6.1 0.1nm lambda Averaged wavelength for the multiplet
23- 30 E8.3 --- C C parameter (1)
33- 38 I6 K T Temperature
41- 49 E9.4 --- We Electron-impact full Stark width at half-maximum
51- 60 E10.4 --- de Electron-impact Stark shift
62- 70 E9.4 --- WH+ Proton-impact full Stark width at half-maximum
72- 81 E10.4 --- dH+ Proton-impact Stark shift
83- 91 E9.4 --- WHe+ Singly charged helium-impact full Stark width
at half-maximum
93-102 E10.4 --- dHe+ Singly charged helium-impact Stark shift
104-112 E9.4 --- WMSE Electron-impact full Stark width at
half-maximum (2)
--------------------------------------------------------------------------------
Note (1): This parameter when divided with the corresponding Stark width
gives an estimate for the maximal perturber density for which the
line may be treated as isolated.
Note (2): calculated by Dimitrijevic (1993A&AS..100..237D 1993A&AS..100..237D) using modified
semi-empirical formula (Dimitrijevic & Konjevic, 1980,
J. Quant. Spectrosc. Radiat. Transfer, 24, 451)
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Patricia Vannier [CDS] 10-Aug-2009