J/MNRAS/406/1745 H2O in interstellar shock waves (Flower+, 2010)
Excitation and emission of H2, CO and H2 O molecules in interstellar
shock waves.
Flower D.R., Pineau des Forets G.
<Mon. Not. R. Astron. Soc., 406, 1745-1758 (2010)>
=2010MNRAS.406.1745F 2010MNRAS.406.1745F
ADC_Keywords: Atomic physics ; Interstellar medium
Keywords: molecular processes - shock waves - ISM: jets and outflows -
infrared: ISM - submillimetre: ISM
Abstract:
The dissipation of kinetic energy that occurs in interstellar shock
waves is accompanied by the emission of radiation. In the case of
shocks that are propagating into mainly molecular gas, the emission
occurs principally in lines of the species H2, H, O, CO and H2O.
The relative intensities of these emission lines are indicative of the
type and speed of the shock wave and of the physical conditions in the
ambient gas. We present the results of computations of the intensities
of these lines, for small grids of models of C- and J-type shock
waves, and compare with the results of previous calculations. Our
results should serve to aid the interpretation of observations made
with the Herschel and other satellites.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablea3.dat 105 158 C-shocks : ortho-H2O line intensities
tablea4.dat 106 157 C-shocks : para-H2O line intensities
tablea5.dat 98 158 J-shocks : ortho-H2O line intensities
tablea6.dat 98 157 J-shocks : para-H2O line intensities
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea?.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 A8 --- Upper Upper level (1)
9- 15 A7 --- Lower Lower level (1)
17- 22 F6.1 K Eup Excitation energy of the upper level of the
transition, relative to the 0 0 0 ground level
24- 32 F9.3 GHz nu Frequency of transition
34- 42 F9.3 um lambda Wavelength of transition
44- 50 E7.3 K.km/s v10n2e4 Line intensity, TdV, for shock speed
vs=10km/s and nH=2x104cm-3 (2)
52- 58 E7.3 K.km/s v20n2e4 Line intensity, TdV, for shock speed
vs=20km/s and nH=2x104cm-3 (2)
60- 66 E7.3 K.km/s v30n2e4 Line intensity, TdV, for shock speed
vs=30km/s and nH=2x104cm-3 (2)
68- 74 E7.3 K.km/s v40n2e4 ? Line intensity, TdV, for shock speed
vs=40km/s and nH=2x104cm-3 (2)
76- 82 E7.3 K.km/s v10n2e5 Line intensity, TdV, for shock speed
vs=10km/s and nH=2x105cm-3 (2)
84- 90 E7.3 K.km/s v20n2e5 Line intensity, TdV, for shock speed
vs=20km/s and nH=2x105cm-3 (2)
92- 98 E7.3 K.km/s v30n2e5 Line intensity, TdV, for shock speed
vs=30km/s and nH=2x105cm-3 (2)
100-106 E7.3 K.km/s v40n2e5 ? Line intensity, TdV, for shock speed
vs=40km/s and nH=2x105cm-3 (2)
--------------------------------------------------------------------------------
Note (1): The levels are identified by JK+K-, where J is the rotational
quantum number and K is its projection on the symmetry axis of the
molecule; the '+' and '-' subscripts refer to the oblate and prolate
symmetric top limits, respectively.
Note (2): Where vs is the shock speed and nH the pre-shock density.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Patricia Vannier [CDS] 01-Feb-2011