J/MNRAS/408/827      Simulations of supernova explosions        (Dessart+, 2010)

Determining the main-sequence mass of type II supernova progenitors. Dessart L., Livne E., Waldman R. <Mon. Not. R. Astron. Soc., 408, 827-840 (2010)> =2010MNRAS.408..827D 2010MNRAS.408..827D
ADC_Keywords: Supernovae ; Models, atmosphere Keywords: hydrodynamics - radiative transfer - stars: atmospheres - stars: supernovae: general Abstract: We present radiation-hydrodynamic simulations of core-collapse supernova (SN) explosions, artificially generated by driving a piston at the base of the envelope of a rotating or non-rotating red-supergiant progenitor star. We search for trends in ejecta kinematics in the resulting Type II-Plateau (II-P) SN, exploring dependencies with explosion energy and pre-SN stellar-evolution model. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 65 9 Summary of the properties for a representative sample of pre-SN models employed in this study simul.dat 103 229 Summary of properties (tables 2-7 of the paper) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- Model Pre-SN model designation (1) 5- 8 F4.1 Msun Mi Initial mass (i.e. the main-sequence mass) 10- 14 F5.2 Msun Mf Final mass (i.e. the mass at core collapse) 16- 19 F4.2 Msun Mcore Lagrangian mass delimiting outer edge of the core 21- 24 F4.2 Msun MeO Lagrangian mass delimiting outer edge of the oxygen (O) shell 26- 29 F4.2 Msun MeHe Lagrangian mass delimiting outer edge of the helium (He) shell 31- 35 F5.2 Msun MiH Lagrangian mass delimiting inner edge of the hydrogen (H) shell 37- 40 F4.2 Msun MHenv Mass of the hydrogen-rich envelope 42- 46 F5.2 10+8km DR Size of the hydrogen-rich envelope (in 1013cm) 48- 53 F6.3 10+8km R* surface radius (in 1013cm) 55- 59 F5.3 10+44J Egrav Gravitational energy of the progenitor envelope outside of Mcore (in 1051erg) 61- 65 F5.3 10+44J Ebind Binding energy of the progenitor envelope outside of Mcore (in 1051erg) -------------------------------------------------------------------------------- Note (1): pre-SN models are: * Non-rotating ('s' series): Woosley, Heger and Weaver, 2002, Rev. Modern Phys. 74, 1015 (WHW02) * rotating ('E' series): Heger, Langer & Woosley, 2000ApJ...528..368H 2000ApJ...528..368H (HLW00) -------------------------------------------------------------------------------- Byte-by-byte Description of file: simul.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1 I1 --- Case [2/7] Model cases (1) 3- 15 A13 --- Sim Simulation Name 17- 20 F4.1 Msun Mi Initial mass 22- 24 F3.1 10+44W Ekin asymptotic ejecta kinetic energy 26- 29 F4.2 Msun Mp Piston mass cut 31- 35 I5 km/s Vp Piston speed 37- 41 F5.2 Msun Mf Final mass 43- 46 F4.2 Msun Mrem Mass of the remnant (2) 48- 52 F5.2 Msun Mej Mass of the ejecta 54- 57 I4 km/s Vinner Mean velocity of the inner 0.1M of the ejecta 59- 62 I4 km/s VeO Velocity at the outer edge of the oxygen shell 64- 67 I4 km/s ViH Velocity at the inner edge of the hydrogen shell 69- 73 I5 km/s Vp15d Photospheric velocity at 15d after shock breakout 75- 78 I4 km/s Vp50d Photospheric velocity at 50d after shock breakout 80- 83 F4.2 10+44W Eej Effective asymptotic ejecta kinetic energy (in 1051erg) 85- 86 I2 % f(H) Fraction endowed by the hydrogen-rich part of the ejecta 88- 93 F6.4 Msun MO Ejected oxygen mass 95- 97 F3.1 d tSBO Delay time between the piston trigger and shock breakout 99-103 F5.1 d dtP Plateau duration (3) -------------------------------------------------------------------------------- Note (1): Cases as follows: 2 = for a representative set of V1D simulations based on the non -rotating pre-SN models of Woosley, Heger and Weaver, 2002, Rev. Modern Phys. 74, 1015 3 = for non-rotating pre-SN models of Woosley, Heger and Weaver, 2002, Rev. Modern Phys. 74, 1015; main-sequence mass in range 11-15M 4 = for non-rotating pre-SN models of Woosley, Heger and Weaver, 2002, Rev. Modern Phys. 74, 1015; main-sequence mass in range 16-20M 5 = for non-rotating pre-SN models of Woosley, Heger and Weaver, 2002, Rev. Modern Phys. 74, 1015; main-sequence mass in range 21-25M 6 = for non-rotating pre-SN models of Woosley, Heger and Weaver, 2002, Rev. Modern Phys. 74, 1015; main-sequence mass in range 26-30M 7 = for our V1D simulations based on the rotating pre-SN models E10, E12, E15 and E20 of Heger et al., 2000ApJ...528..368H 2000ApJ...528..368H Note (2): i.e. the material that fails to escape and accumulates in the neutron star or black hole. Note (3): defined as the time it takes the luminosity to decrease after the plateau peak by a factor of 10; note that no 56Ni is injected in the ejecta, so that this plateau duration is a lower limit. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Patricia Vannier [CDS] 03-May-2011
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line