J/MNRAS/408/827 Simulations of supernova explosions (Dessart+, 2010)
Determining the main-sequence mass of type II supernova progenitors.
Dessart L., Livne E., Waldman R.
<Mon. Not. R. Astron. Soc., 408, 827-840 (2010)>
=2010MNRAS.408..827D 2010MNRAS.408..827D
ADC_Keywords: Supernovae ; Models, atmosphere
Keywords: hydrodynamics - radiative transfer - stars: atmospheres -
stars: supernovae: general
Abstract:
We present radiation-hydrodynamic simulations of core-collapse
supernova (SN) explosions, artificially generated by driving a
piston at the base of the envelope of a rotating or non-rotating
red-supergiant progenitor star. We search for trends in ejecta
kinematics in the resulting Type II-Plateau (II-P) SN, exploring
dependencies with explosion energy and pre-SN stellar-evolution model.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 65 9 Summary of the properties for a representative
sample of pre-SN models employed in this study
simul.dat 103 229 Summary of properties (tables 2-7 of the paper)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 A3 --- Model Pre-SN model designation (1)
5- 8 F4.1 Msun Mi Initial mass (i.e. the main-sequence mass)
10- 14 F5.2 Msun Mf Final mass (i.e. the mass at core collapse)
16- 19 F4.2 Msun Mcore Lagrangian mass delimiting outer edge of the core
21- 24 F4.2 Msun MeO Lagrangian mass delimiting outer edge of the
oxygen (O) shell
26- 29 F4.2 Msun MeHe Lagrangian mass delimiting outer edge of the
helium (He) shell
31- 35 F5.2 Msun MiH Lagrangian mass delimiting inner edge of the
hydrogen (H) shell
37- 40 F4.2 Msun MHenv Mass of the hydrogen-rich envelope
42- 46 F5.2 10+8km DR Size of the hydrogen-rich envelope (in 1013cm)
48- 53 F6.3 10+8km R* surface radius (in 1013cm)
55- 59 F5.3 10+44J Egrav Gravitational energy of the progenitor
envelope outside of Mcore (in 1051erg)
61- 65 F5.3 10+44J Ebind Binding energy of the progenitor envelope
outside of Mcore (in 1051erg)
--------------------------------------------------------------------------------
Note (1): pre-SN models are:
* Non-rotating ('s' series): Woosley, Heger and Weaver, 2002,
Rev. Modern Phys. 74, 1015 (WHW02)
* rotating ('E' series): Heger, Langer & Woosley, 2000ApJ...528..368H 2000ApJ...528..368H (HLW00)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: simul.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1 I1 --- Case [2/7] Model cases (1)
3- 15 A13 --- Sim Simulation Name
17- 20 F4.1 Msun Mi Initial mass
22- 24 F3.1 10+44W Ekin asymptotic ejecta kinetic energy
26- 29 F4.2 Msun Mp Piston mass cut
31- 35 I5 km/s Vp Piston speed
37- 41 F5.2 Msun Mf Final mass
43- 46 F4.2 Msun Mrem Mass of the remnant (2)
48- 52 F5.2 Msun Mej Mass of the ejecta
54- 57 I4 km/s Vinner Mean velocity of the inner 0.1M☉
of the ejecta
59- 62 I4 km/s VeO Velocity at the outer edge of the oxygen shell
64- 67 I4 km/s ViH Velocity at the inner edge of the hydrogen
shell
69- 73 I5 km/s Vp15d Photospheric velocity at 15d after shock
breakout
75- 78 I4 km/s Vp50d Photospheric velocity at 50d after shock
breakout
80- 83 F4.2 10+44W Eej Effective asymptotic ejecta kinetic energy
(in 1051erg)
85- 86 I2 % f(H) Fraction endowed by the hydrogen-rich part
of the ejecta
88- 93 F6.4 Msun MO Ejected oxygen mass
95- 97 F3.1 d tSBO Delay time between the piston trigger and
shock breakout
99-103 F5.1 d dtP Plateau duration (3)
--------------------------------------------------------------------------------
Note (1): Cases as follows:
2 = for a representative set of V1D simulations based on the non
-rotating pre-SN models of Woosley, Heger and Weaver, 2002,
Rev. Modern Phys. 74, 1015
3 = for non-rotating pre-SN models of Woosley, Heger and Weaver, 2002,
Rev. Modern Phys. 74, 1015; main-sequence mass in range 11-15M☉
4 = for non-rotating pre-SN models of Woosley, Heger and Weaver, 2002,
Rev. Modern Phys. 74, 1015; main-sequence mass in range 16-20M☉
5 = for non-rotating pre-SN models of Woosley, Heger and Weaver, 2002,
Rev. Modern Phys. 74, 1015; main-sequence mass in range 21-25M☉
6 = for non-rotating pre-SN models of Woosley, Heger and Weaver, 2002,
Rev. Modern Phys. 74, 1015; main-sequence mass in range 26-30M☉
7 = for our V1D simulations based on the rotating pre-SN models
E10, E12, E15 and E20 of Heger et al., 2000ApJ...528..368H 2000ApJ...528..368H
Note (2): i.e. the material that fails to escape and accumulates in the
neutron star or black hole.
Note (3): defined as the time it takes the luminosity to decrease after the
plateau peak by a factor of 10; note that no 56Ni is injected in the
ejecta, so that this plateau duration is a lower limit.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Patricia Vannier [CDS] 03-May-2011