J/MNRAS/420/926 Morphology of galaxies in WINGS clusters (Fasano+, 2012)
Morphology of galaxies in the WINGS clusters.
Fasano G., Vanzella E., Dressler A., Poggianti B.M., Moles M.,
Bettoni D., Valentinuzzi T., Moretti A., D'Onofrio M., Varela J.,
Couch W.J., Kjaergaard P., Fritz J., Omizzolo A., Cava A.
<Mon. Not. R. Astron. Soc. 420, 926 (2012)>
=2012MNRAS.420..926F 2012MNRAS.420..926F
ADC_Keywords: Clusters, galaxy ; Galaxy catalogs ; Morphology
Keywords: galaxies: clusters: general -
galaxies: elliptical and lenticular, cD - Galaxies, general
Abstract:
We present the morphological catalog of galaxies in nearby clusters
of the WINGS survey (Fasano et al., 2006A&A...445..805F 2006A&A...445..805F). The catalog
contains a total number of 39923 galaxies, for which we provide the
automatic estimates of the morphological type applying the purposely
devised tool MORPHOT to the V-band WINGS imaging. For ∼3000 galaxies
we also provide visual estimates of the morphological types. A
substantial part of the paper is devoted to the description of the
MORPHOT tool, whose application is limited, at least for the moment,
to the WINGS imaging only. The approach of the tool to the automation
of morphological classification is a non parametric and fully
empirical one. In particular, MORPHOT exploits 21 morphological
diagnostics, directly and easily computable from the galaxy image,
to provide two independent classifications: one based on a Maximum
Likelihood (ML), semi-analytical technique, the other one on a Neural
Network (NN) machine. A suitably selected sample of ∼1000 visually
classified WINGS galaxies is used to calibrate the diagnostics for
the ML estimator and as a training set in the NN machine. The final
morphological estimator combines the two techniques and proves to be
effective both when applied to an additional test sample of ∼1000
visually classified WINGS galaxies and when compared with small
samples of SDSS galaxies visually classified by Fukugita et al. (2007,
Cat. J/AJ/134/579) and Nair et al. (2010, Cat. J/ApJS/186/427).
Finally, besides the galaxy morphology distribution (corrected for
field contamination) in the WINGS clusters, we present the
ellipticity, color (B-V) and Sersic index (n) distributions for
different morphological types, as well as the morphological fractions
as a function of the clustercentric distance (in units of R200).
Description:
Morphological types for 39923 galaxies in 76 clusters of the WINGS
survey are presented. The morphology has been mostly estimated using
the automatic tool MORPHOT, while for ∼3000 galaxies visual estimates
are also provided.
For each galaxy we give a Maximum Likelihood, a Neural Network and a
final estimate of the morphological type, together with the
corresponding confidence intervals.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
morphot.dat 108 39923 Morphological types for 39923 galaxies in
76 WINGS clusters (0.04<z<0.07)
--------------------------------------------------------------------------------
See also:
J/A+A/470/39 : Substructures in WINGS clusters (Ramella+, 2007)
J/A+A/495/707 : WINGS spectroscopy of 48 galaxy clusters (Cava+, 2009)
J/A+A/497/667 : WINGS: Deep optical phot. of 77 nearby clusters (Varela+, 2009
J/A+A/501/851 : WINGS JK photometry of 28 galaxy clusters (Valentinuzzi+, 2009
J/A+A/526/A45 : WINGS-SPE II catalog (Fritz+, 2011)
Byte-by-byte Description of file: morphot.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 A5 --- --- [WINGS]
6- 24 A19 --- WINGS Object identification, JHHMMSS.ss+DDMMSS.s
26- 32 A7 --- Cluster Cluster name
34- 39 F6.1 --- MT.ML ?=-999 Maximum Likelihood morphological type (1)
41- 46 F6.1 --- b_MT.ML ?=-999 Lower confidence limit for MTypeML (1)
48- 53 F6.1 --- B_MT.ML ?=-999 Upper confidence limit for MTypeML (1)
55- 60 F6.1 --- MT.NN ?=-999 Neural Network morphological type (1)
62- 67 F6.1 --- b_MT.NN ?=-999 Lower confidence limit for MTypeNN (1)
69- 74 F6.1 --- B_MT.NN ?=-999 Upper confidence limit for MTypeNN (1)
76- 81 F6.1 --- MT.M ?=-999 MORPHOT morphological type (2)
83- 88 F6.1 --- b_MT.M ?=-999 Lower confidence limit for MTypeM (2)
90- 95 F6.1 --- B_MT.M ?=-999 Upper confidence limit for MTypeM (2)
97-102 F6.1 --- MT.vis ?=-999 Visual morphological type (1)
104-108 F5.1 --- MType Final morphological type (1)
--------------------------------------------------------------------------------
Note (1): Everywhere in the catalog not available data are
indicated with -999.0. MType codes are defined in table1
[Revised Hubble Type (TRH) and MORPHOT Type (TM) codes]
------------------------------------------------------------
Code TRH TM Note
------------------------------------------------------------
-6 cE cD cE are compact elliptical galaxies
-5 E E
-4 cD E/S0
-3 S0- S0-
-2 S0 S0
-1 S0+ S0+
0 S0/a S0/a
1 Sa Sa
2 Sab Sab
3 Sb Sb
4 Sbc Sbc
5 Sc Sc
6 Scd Scd
7 Sd Sd
8 Sdm Sdm
9 Sm Sm
10 Im Im
11 cI cI cI are compact irregular galaxies
------------------------------------------------------------
Note (2): MTypeM is evaluated as (MTypeML + MTypeNN)/2; similarly
b_MTypeM = (b_MTypeML + b_MTypeNN)/2
B_MTypeM = (B_MTypeML + B_MTypeNN)/2
--------------------------------------------------------------------------------
Acknowledgements:
Giovanni Fasano, giovanni.fasano(at)oapd.inaf.it
References:
Fasano et al., Paper I. 2006A&A...445..805F 2006A&A...445..805F
Varela et al., Paper II. 2009A&A...497..667V 2009A&A...497..667V
Valentnuzzi et al., Paper III. 2009arXiv0902.0954V 2009arXiv0902.0954V
Cava el al., Spectroscopy 2009A&A...495..707C 2009A&A...495..707C
(End) Giovanni Fasano [INAF-OAPD, Italy], Patricia Vannier [CDS] 30-Jan-2012