J/MNRAS/420/926     Morphology of galaxies in WINGS clusters    (Fasano+, 2012)

Morphology of galaxies in the WINGS clusters. Fasano G., Vanzella E., Dressler A., Poggianti B.M., Moles M., Bettoni D., Valentinuzzi T., Moretti A., D'Onofrio M., Varela J., Couch W.J., Kjaergaard P., Fritz J., Omizzolo A., Cava A. <Mon. Not. R. Astron. Soc. 420, 926 (2012)> =2012MNRAS.420..926F 2012MNRAS.420..926F
ADC_Keywords: Clusters, galaxy ; Galaxy catalogs ; Morphology Keywords: galaxies: clusters: general - galaxies: elliptical and lenticular, cD - Galaxies, general Abstract: We present the morphological catalog of galaxies in nearby clusters of the WINGS survey (Fasano et al., 2006A&A...445..805F 2006A&A...445..805F). The catalog contains a total number of 39923 galaxies, for which we provide the automatic estimates of the morphological type applying the purposely devised tool MORPHOT to the V-band WINGS imaging. For ∼3000 galaxies we also provide visual estimates of the morphological types. A substantial part of the paper is devoted to the description of the MORPHOT tool, whose application is limited, at least for the moment, to the WINGS imaging only. The approach of the tool to the automation of morphological classification is a non parametric and fully empirical one. In particular, MORPHOT exploits 21 morphological diagnostics, directly and easily computable from the galaxy image, to provide two independent classifications: one based on a Maximum Likelihood (ML), semi-analytical technique, the other one on a Neural Network (NN) machine. A suitably selected sample of ∼1000 visually classified WINGS galaxies is used to calibrate the diagnostics for the ML estimator and as a training set in the NN machine. The final morphological estimator combines the two techniques and proves to be effective both when applied to an additional test sample of ∼1000 visually classified WINGS galaxies and when compared with small samples of SDSS galaxies visually classified by Fukugita et al. (2007, Cat. J/AJ/134/579) and Nair et al. (2010, Cat. J/ApJS/186/427). Finally, besides the galaxy morphology distribution (corrected for field contamination) in the WINGS clusters, we present the ellipticity, color (B-V) and Sersic index (n) distributions for different morphological types, as well as the morphological fractions as a function of the clustercentric distance (in units of R200). Description: Morphological types for 39923 galaxies in 76 clusters of the WINGS survey are presented. The morphology has been mostly estimated using the automatic tool MORPHOT, while for ∼3000 galaxies visual estimates are also provided. For each galaxy we give a Maximum Likelihood, a Neural Network and a final estimate of the morphological type, together with the corresponding confidence intervals. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file morphot.dat 108 39923 Morphological types for 39923 galaxies in 76 WINGS clusters (0.04<z<0.07) -------------------------------------------------------------------------------- See also: J/A+A/470/39 : Substructures in WINGS clusters (Ramella+, 2007) J/A+A/495/707 : WINGS spectroscopy of 48 galaxy clusters (Cava+, 2009) J/A+A/497/667 : WINGS: Deep optical phot. of 77 nearby clusters (Varela+, 2009 J/A+A/501/851 : WINGS JK photometry of 28 galaxy clusters (Valentinuzzi+, 2009 J/A+A/526/A45 : WINGS-SPE II catalog (Fritz+, 2011) Byte-by-byte Description of file: morphot.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 A5 --- --- [WINGS] 6- 24 A19 --- WINGS Object identification, JHHMMSS.ss+DDMMSS.s 26- 32 A7 --- Cluster Cluster name 34- 39 F6.1 --- MT.ML ?=-999 Maximum Likelihood morphological type (1) 41- 46 F6.1 --- b_MT.ML ?=-999 Lower confidence limit for MTypeML (1) 48- 53 F6.1 --- B_MT.ML ?=-999 Upper confidence limit for MTypeML (1) 55- 60 F6.1 --- MT.NN ?=-999 Neural Network morphological type (1) 62- 67 F6.1 --- b_MT.NN ?=-999 Lower confidence limit for MTypeNN (1) 69- 74 F6.1 --- B_MT.NN ?=-999 Upper confidence limit for MTypeNN (1) 76- 81 F6.1 --- MT.M ?=-999 MORPHOT morphological type (2) 83- 88 F6.1 --- b_MT.M ?=-999 Lower confidence limit for MTypeM (2) 90- 95 F6.1 --- B_MT.M ?=-999 Upper confidence limit for MTypeM (2) 97-102 F6.1 --- MT.vis ?=-999 Visual morphological type (1) 104-108 F5.1 --- MType Final morphological type (1) -------------------------------------------------------------------------------- Note (1): Everywhere in the catalog not available data are indicated with -999.0. MType codes are defined in table1 [Revised Hubble Type (TRH) and MORPHOT Type (TM) codes] ------------------------------------------------------------ Code TRH TM Note ------------------------------------------------------------ -6 cE cD cE are compact elliptical galaxies -5 E E -4 cD E/S0 -3 S0- S0- -2 S0 S0 -1 S0+ S0+ 0 S0/a S0/a 1 Sa Sa 2 Sab Sab 3 Sb Sb 4 Sbc Sbc 5 Sc Sc 6 Scd Scd 7 Sd Sd 8 Sdm Sdm 9 Sm Sm 10 Im Im 11 cI cI cI are compact irregular galaxies ------------------------------------------------------------ Note (2): MTypeM is evaluated as (MTypeML + MTypeNN)/2; similarly b_MTypeM = (b_MTypeML + b_MTypeNN)/2 B_MTypeM = (B_MTypeML + B_MTypeNN)/2 -------------------------------------------------------------------------------- Acknowledgements: Giovanni Fasano, giovanni.fasano(at)oapd.inaf.it References: Fasano et al., Paper I. 2006A&A...445..805F 2006A&A...445..805F Varela et al., Paper II. 2009A&A...497..667V 2009A&A...497..667V Valentnuzzi et al., Paper III. 2009arXiv0902.0954V 2009arXiv0902.0954V Cava el al., Spectroscopy 2009A&A...495..707C 2009A&A...495..707C
(End) Giovanni Fasano [INAF-OAPD, Italy], Patricia Vannier [CDS] 30-Jan-2012
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line