J/MNRAS/428/1845 PACO spectrally selected sample (Bonaldi+, 2013)
The Planck-ATCA Co-eval Observations project: the spectrally selected sample.
Bonaldi A., Bonavera L., Massardi M., De Zotti G.
<Mon. Not. R. Astron. Soc., 428, 1845-1854 (2013)>
=2013MNRAS.428.1845B 2013MNRAS.428.1845B
ADC_Keywords: Galaxies, radio ; Active gal. nuclei
Keywords: galaxies: active - radio continuum: galaxies -
radio continuum: general - conduction - MHD - methods: numerical
Abstract:
The Planck Australia Telescope Compact Array (Planck-ATCA) Co-eval
Observations (PACO) have provided multi-frequency (5-40GHz) flux
density measurements of complete samples of Australia Telescope 20GHz
(AT20G) radio sources at frequencies below and overlapping with Planck
frequency bands, almost simultaneously with Planck observations. In
this work we analyse the data in total intensity for the spectrally
selected PACO sample, a complete sample of 69 sources brighter than
S20GHz=200mJy selected from the AT20G survey catalogue to be inverted
or upturning between 5 and 20GHz. We study the spectral behaviour and
variability of the sample. We use the variability between AT20G
(2004-2007) and PACO (2009-2010) epochs to discriminate between
candidate High-Frequency Peakers (HFPs) and candidate blazars. The
HFPs picked up by our selection criteria have spectral peaks >10GHz in
the observer frame and turn out to be rare (<0.5% of the
S20GHz≥200mJy sources), consistent with the short duration of this
phase implied by the "youth" scenario. Most (≃89%) of blazar
candidates have remarkably smooth spectra, well described by a double
power law, suggesting that the emission in the PACO frequency range is
dominated by a single emitting region. Sources with peaked PACO
spectra show a decrease of the peak frequency with time at a mean rate
of -3±2GHz/yr on an average time-scale of <τ≥2.1±0.5yr
(median: τmedian=1.3yr). The 5-20GHz spectral indices show a
systematic decrease from AT20G to PACO. At higher frequencies spectral
indices steepen: the median α4030 is steeper than the median
α205 by δα=0.6. Taking further into account the
Wide-field Infrared Survey Explorer data we find that the Spectral
Energy Distributions (SEDs), νS(ν), of most of our blazars peak
at νSEDp<105GHz; the median peak wavelength is
λSEDp≃93µm. Only six have νSEDp>105GHz.
Description:
The SS PACO sample comprises all the 69 sources with S20GHz>200mJy and
spectra classified in the AT20G catalogue (Massardi et al.
2011MNRAS.412..318M 2011MNRAS.412..318M) as inverted or upturning in the frequency range
4.8-20GHz, selected over the whole Southern sky. These sources have
been re-observed for the PACO project between 2009 September and 2010
February, with a scheduling process optimized to allow observations at
all the frequencies almost simultaneous (i.e. within 10 d) with the
Planck satellite.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
catalog.dat 388 421 Planck-ATCA Co-eval Observations (PACO) spectrally
selected sample
table3.dat 86 64 Blazar candidates in our sample
--------------------------------------------------------------------------------
See also:
J/MNRAS/415/1597 : PACO catalogue of bright sources (Massardi+, 2011)
J/MNRAS/402/2403 : Australia Telescope 20GHz Survey Catalog, AT20G
(Murphy et al., 2010)
Byte-by-byte Description of file: catalog.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 A5 --- --- [AT20G]
6- 19 A14 --- AT20G AT20G name (JHHMMSS+DDMMSS)
22- 31 F10.7 h RAhour Right ascension in decimal hours (J2000)
33- 43 F11.7 deg DEdeg Declination in decimal degrees (J2000)
46- 55 A10 "Y-M-D" Date Observation date
57 A1 --- fs [s-] Flag "s" to identify epochs within
10-days from Planck observations
59 A1 --- fe [e-] Flag "e" for extended sources
61 A1 --- fh [hb] h for High-Frequency Peakers (HFP)
candidates, b for blazar candidates
62 A1 --- l_S4732 Limit flag on S4732
63- 66 I4 mJy S4732 ?=0 Flux at PACO 4732MHz frequency
67 A1 --- l_S5244 Limit flag on S5244
69- 72 I4 mJy S5244 ?=0 Flux at PACO 5244MHz frequency
73 A1 --- l_S5756 Limit flag on S5756
75- 78 I4 mJy S5756 ?=0 Flux at PACO 5756MHz frequency
79 A1 --- l_S6268 Limit flag on S6268
81- 84 I4 mJy S6268 ?=0 Flux at PACO 6268MHz frequency
85 A1 --- l_S8232 Limit flag on SS8232
87- 90 I4 mJy S8232 ?=0 Flux at PACO 8232MHz frequency
91 A1 --- l_S8744 Limit flag on S8744
93- 96 I4 mJy S8744 ?=0 Flux at PACO 8744MHz frequency
97 A1 --- l_S9256 Limit flag on S9256
99-102 I4 mJy S9256 ?=0 Flux at PACO 9256MHz frequency
103 A1 --- l_S9768 Limit flag on S9768
105-108 I4 mJy S9768 ?=0 Flux at PACO 9768MHz frequency
109 A1 --- l_S17232 Limit flag on S17232
111-114 I4 mJy S17232 ?=0 Flux at PACO 17232MHz frequency
115 A1 --- l_S17744 Limit flag on S17744
117-120 I4 mJy S17744 ?=0 Flux at PACO 17744MHz frequency
121 A1 --- l_S18256 Limit flag on S18256
123-126 I4 mJy S18256 ?=0 Flux at PACO 18256MHz frequency
127 A1 --- l_S18768 Limit flag on S18768
129-132 I4 mJy S18768 ?=0 Flux at PACO 18768MHz frequency
133 A1 --- l_S23232 Limit flag on S23232
135-138 I4 mJy S23232 ?=0 Flux at PACO 23232MHz frequency
139 A1 --- l_S23744 Limit flag on S23744
141-144 I4 mJy S23744 ?=0 Flux at PACO 23744MHz frequency
145 A1 --- l_S24256 Limit flag on S24256
147-150 I4 mJy S24256 ?=0 Flux at PACO 24256MHz frequency
151 A1 --- l_S24768 Limit flag on S24768
153-156 I4 mJy S24768 ?=0 Flux at PACO 24768MHz frequency
157 A1 --- l_S32232 Limit flag on S32232
159-162 I4 mJy S32232 ?=0 Flux at PACO 32232MHz frequency
163 A1 --- l_S32744 Limit flag on S32744
165-168 I4 mJy S32744 ?=0 Flux at PACO 32744MHz frequency
169 A1 --- l_S33256 Limit flag on S33256
171-174 I4 mJy S33256 ?=0 Flux at PACO 33256MHz frequency
175 A1 --- l_S33768 Limit flag on S33768
177-180 I4 mJy S33768 ?=0 Flux at PACO 33768MHz frequency
181 A1 --- l_S38232 Limit flag on S38232
183-186 I4 mJy S38232 ?=0 Flux at PACO 38232MHz frequency
187 A1 --- l_S38744 Limit flag on S38744
189-192 I4 mJy S38744 ?=0 Flux at PACO 38744MHz frequency
193 A1 --- l_S39256 Limit flag on S39256
195-198 I4 mJy S39256 ?=0 Flux at PACO 39256MHz frequency
199 A1 --- l_S39768 Limit flag on S39768
201-204 I4 mJy S39768 ?=0 Flux at PACO 39768MHz frequency
207-210 F4.1 mJy e_S4732 ?=0 rms uncertainty on S4732
213-216 F4.1 mJy e_S5244 ?=0 rms uncertainty on S5244
219-222 F4.1 mJy e_S5756 ?=0 rms uncertainty on S5756
225-228 F4.1 mJy e_S6268 ?=0 rms uncertainty on S6268
231-234 F4.1 mJy e_S8232 ?=0 rms uncertainty on S8232
237-240 F4.1 mJy e_S8744 ?=0 rms uncertainty on S8744
243-246 F4.1 mJy e_S9256 ?=0 rms uncertainty on S9256
249-252 F4.1 mJy e_S9768 ?=0 rms uncertainty on S9768
255-258 F4.1 mJy e_S17232 ?=0 rms uncertainty on S17232
261-264 F4.1 mJy e_S17744 ?=0 rms uncertainty on S17744
267-270 F4.1 mJy e_S18256 ?=0 rms uncertainty on S18256
273-276 F4.1 mJy e_S18768 ?=0 rms uncertainty on S18768
279-282 F4.1 mJy e_S23232 ?=0 rms uncertainty on S23232
285-288 F4.1 mJy e_S23744 ?=0 rms uncertainty on S23744
291-294 F4.1 mJy e_S24256 ?=0 rms uncertainty on S24256
297-300 F4.1 mJy e_S24768 ?=0 rms uncertainty on S24768
303-306 F4.1 mJy e_S32232 ?=0 rms uncertainty on S32232
309-312 F4.1 mJy e_S32744 ?=0 rms uncertainty on S32744
315-318 F4.1 mJy e_S33256 ?=0 rms uncertainty on S33256
321-324 F4.1 mJy e_S33768 ?=0 rms uncertainty on S33768
327-330 F4.1 mJy e_S38232 ?=0 rms uncertainty on S38232
333-336 F4.1 mJy e_S38744 ?=0 rms uncertainty on S38744
339-342 F4.1 mJy e_S39256 ?=0 rms uncertainty on S39256
345-348 F4.1 mJy e_S39768 ?=0 rms uncertainty on S39768
351-356 F6.3 --- a ?=0 Best fit parameter a (1)
359-364 F6.3 --- b ?=0 Best fit parameter b (1)
367-372 F6.3 GHz nu0 ?=0 Best fit parameter ν0 (1)
376-380 F5.3 Jy S0 ?=0 Best fit parameter S0 (1)
384-388 F5.3 --- chi2 ?=0 χ2 of fit (1)
--------------------------------------------------------------------------------
Note (1): Best fit parameters in the double power law:
S(ν)=S0/[(ν/ν0)-a+(ν/ν0)-b], where
ν is the frequency and S is the flux density in Jy.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 14 A14 --- AT20G AT20G name
16- 24 F9.5 deg RAdeg Right ascension (J2000)
26- 34 F9.5 deg DEdeg Declination (J2000)
35- 48 A14 --- Btype Blazar type ("QSO RLoud" or "Uncertain") (1)
50- 54 F5.3 --- z ? Redshift (2)
56- 68 A13 --- Stype Spectral type based on PACO data (complex,
down-turning, flat, peaked, or self-absorbed;
see Section 2.2)
70- 74 F5.2 GHz nup ? Peak frequency νp
76- 79 F4.1 GHz nup2 ? Peak frequency computed taking into
account Planck/ERCSC data
81- 86 F6.2 GHz num ? Rest-frame peak frequency νm
--------------------------------------------------------------------------------
Note (1): The blazar type is taken from Massaro et al. (2009, Cat.
J/A+A/495/691) for the 24 sources in the BZCAT.
Note (2): The redshifts are from Mahony et al. (2011MNRAS.417.2651M 2011MNRAS.417.2651M) and
Massaro et al. (2009, J/A+A/495/691).
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Patricia Vannier [CDS] 31-Jan-2014