J/MNRAS/428/1845    PACO spectrally selected sample            (Bonaldi+, 2013)

The Planck-ATCA Co-eval Observations project: the spectrally selected sample. Bonaldi A., Bonavera L., Massardi M., De Zotti G. <Mon. Not. R. Astron. Soc., 428, 1845-1854 (2013)> =2013MNRAS.428.1845B 2013MNRAS.428.1845B
ADC_Keywords: Galaxies, radio ; Active gal. nuclei Keywords: galaxies: active - radio continuum: galaxies - radio continuum: general - conduction - MHD - methods: numerical Abstract: The Planck Australia Telescope Compact Array (Planck-ATCA) Co-eval Observations (PACO) have provided multi-frequency (5-40GHz) flux density measurements of complete samples of Australia Telescope 20GHz (AT20G) radio sources at frequencies below and overlapping with Planck frequency bands, almost simultaneously with Planck observations. In this work we analyse the data in total intensity for the spectrally selected PACO sample, a complete sample of 69 sources brighter than S20GHz=200mJy selected from the AT20G survey catalogue to be inverted or upturning between 5 and 20GHz. We study the spectral behaviour and variability of the sample. We use the variability between AT20G (2004-2007) and PACO (2009-2010) epochs to discriminate between candidate High-Frequency Peakers (HFPs) and candidate blazars. The HFPs picked up by our selection criteria have spectral peaks >10GHz in the observer frame and turn out to be rare (<0.5% of the S20GHz≥200mJy sources), consistent with the short duration of this phase implied by the "youth" scenario. Most (≃89%) of blazar candidates have remarkably smooth spectra, well described by a double power law, suggesting that the emission in the PACO frequency range is dominated by a single emitting region. Sources with peaked PACO spectra show a decrease of the peak frequency with time at a mean rate of -3±2GHz/yr on an average time-scale of <τ≥2.1±0.5yr (median: τmedian=1.3yr). The 5-20GHz spectral indices show a systematic decrease from AT20G to PACO. At higher frequencies spectral indices steepen: the median α4030 is steeper than the median α205 by δα=0.6. Taking further into account the Wide-field Infrared Survey Explorer data we find that the Spectral Energy Distributions (SEDs), νS(ν), of most of our blazars peak at νSEDp<105GHz; the median peak wavelength is λSEDp≃93µm. Only six have νSEDp>105GHz. Description: The SS PACO sample comprises all the 69 sources with S20GHz>200mJy and spectra classified in the AT20G catalogue (Massardi et al. 2011MNRAS.412..318M 2011MNRAS.412..318M) as inverted or upturning in the frequency range 4.8-20GHz, selected over the whole Southern sky. These sources have been re-observed for the PACO project between 2009 September and 2010 February, with a scheduling process optimized to allow observations at all the frequencies almost simultaneous (i.e. within 10 d) with the Planck satellite. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file catalog.dat 388 421 Planck-ATCA Co-eval Observations (PACO) spectrally selected sample table3.dat 86 64 Blazar candidates in our sample -------------------------------------------------------------------------------- See also: J/MNRAS/415/1597 : PACO catalogue of bright sources (Massardi+, 2011) J/MNRAS/402/2403 : Australia Telescope 20GHz Survey Catalog, AT20G (Murphy et al., 2010) Byte-by-byte Description of file: catalog.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 A5 --- --- [AT20G] 6- 19 A14 --- AT20G AT20G name (JHHMMSS+DDMMSS) 22- 31 F10.7 h RAhour Right ascension in decimal hours (J2000) 33- 43 F11.7 deg DEdeg Declination in decimal degrees (J2000) 46- 55 A10 "Y-M-D" Date Observation date 57 A1 --- fs [s-] Flag "s" to identify epochs within 10-days from Planck observations 59 A1 --- fe [e-] Flag "e" for extended sources 61 A1 --- fh [hb] h for High-Frequency Peakers (HFP) candidates, b for blazar candidates 62 A1 --- l_S4732 Limit flag on S4732 63- 66 I4 mJy S4732 ?=0 Flux at PACO 4732MHz frequency 67 A1 --- l_S5244 Limit flag on S5244 69- 72 I4 mJy S5244 ?=0 Flux at PACO 5244MHz frequency 73 A1 --- l_S5756 Limit flag on S5756 75- 78 I4 mJy S5756 ?=0 Flux at PACO 5756MHz frequency 79 A1 --- l_S6268 Limit flag on S6268 81- 84 I4 mJy S6268 ?=0 Flux at PACO 6268MHz frequency 85 A1 --- l_S8232 Limit flag on SS8232 87- 90 I4 mJy S8232 ?=0 Flux at PACO 8232MHz frequency 91 A1 --- l_S8744 Limit flag on S8744 93- 96 I4 mJy S8744 ?=0 Flux at PACO 8744MHz frequency 97 A1 --- l_S9256 Limit flag on S9256 99-102 I4 mJy S9256 ?=0 Flux at PACO 9256MHz frequency 103 A1 --- l_S9768 Limit flag on S9768 105-108 I4 mJy S9768 ?=0 Flux at PACO 9768MHz frequency 109 A1 --- l_S17232 Limit flag on S17232 111-114 I4 mJy S17232 ?=0 Flux at PACO 17232MHz frequency 115 A1 --- l_S17744 Limit flag on S17744 117-120 I4 mJy S17744 ?=0 Flux at PACO 17744MHz frequency 121 A1 --- l_S18256 Limit flag on S18256 123-126 I4 mJy S18256 ?=0 Flux at PACO 18256MHz frequency 127 A1 --- l_S18768 Limit flag on S18768 129-132 I4 mJy S18768 ?=0 Flux at PACO 18768MHz frequency 133 A1 --- l_S23232 Limit flag on S23232 135-138 I4 mJy S23232 ?=0 Flux at PACO 23232MHz frequency 139 A1 --- l_S23744 Limit flag on S23744 141-144 I4 mJy S23744 ?=0 Flux at PACO 23744MHz frequency 145 A1 --- l_S24256 Limit flag on S24256 147-150 I4 mJy S24256 ?=0 Flux at PACO 24256MHz frequency 151 A1 --- l_S24768 Limit flag on S24768 153-156 I4 mJy S24768 ?=0 Flux at PACO 24768MHz frequency 157 A1 --- l_S32232 Limit flag on S32232 159-162 I4 mJy S32232 ?=0 Flux at PACO 32232MHz frequency 163 A1 --- l_S32744 Limit flag on S32744 165-168 I4 mJy S32744 ?=0 Flux at PACO 32744MHz frequency 169 A1 --- l_S33256 Limit flag on S33256 171-174 I4 mJy S33256 ?=0 Flux at PACO 33256MHz frequency 175 A1 --- l_S33768 Limit flag on S33768 177-180 I4 mJy S33768 ?=0 Flux at PACO 33768MHz frequency 181 A1 --- l_S38232 Limit flag on S38232 183-186 I4 mJy S38232 ?=0 Flux at PACO 38232MHz frequency 187 A1 --- l_S38744 Limit flag on S38744 189-192 I4 mJy S38744 ?=0 Flux at PACO 38744MHz frequency 193 A1 --- l_S39256 Limit flag on S39256 195-198 I4 mJy S39256 ?=0 Flux at PACO 39256MHz frequency 199 A1 --- l_S39768 Limit flag on S39768 201-204 I4 mJy S39768 ?=0 Flux at PACO 39768MHz frequency 207-210 F4.1 mJy e_S4732 ?=0 rms uncertainty on S4732 213-216 F4.1 mJy e_S5244 ?=0 rms uncertainty on S5244 219-222 F4.1 mJy e_S5756 ?=0 rms uncertainty on S5756 225-228 F4.1 mJy e_S6268 ?=0 rms uncertainty on S6268 231-234 F4.1 mJy e_S8232 ?=0 rms uncertainty on S8232 237-240 F4.1 mJy e_S8744 ?=0 rms uncertainty on S8744 243-246 F4.1 mJy e_S9256 ?=0 rms uncertainty on S9256 249-252 F4.1 mJy e_S9768 ?=0 rms uncertainty on S9768 255-258 F4.1 mJy e_S17232 ?=0 rms uncertainty on S17232 261-264 F4.1 mJy e_S17744 ?=0 rms uncertainty on S17744 267-270 F4.1 mJy e_S18256 ?=0 rms uncertainty on S18256 273-276 F4.1 mJy e_S18768 ?=0 rms uncertainty on S18768 279-282 F4.1 mJy e_S23232 ?=0 rms uncertainty on S23232 285-288 F4.1 mJy e_S23744 ?=0 rms uncertainty on S23744 291-294 F4.1 mJy e_S24256 ?=0 rms uncertainty on S24256 297-300 F4.1 mJy e_S24768 ?=0 rms uncertainty on S24768 303-306 F4.1 mJy e_S32232 ?=0 rms uncertainty on S32232 309-312 F4.1 mJy e_S32744 ?=0 rms uncertainty on S32744 315-318 F4.1 mJy e_S33256 ?=0 rms uncertainty on S33256 321-324 F4.1 mJy e_S33768 ?=0 rms uncertainty on S33768 327-330 F4.1 mJy e_S38232 ?=0 rms uncertainty on S38232 333-336 F4.1 mJy e_S38744 ?=0 rms uncertainty on S38744 339-342 F4.1 mJy e_S39256 ?=0 rms uncertainty on S39256 345-348 F4.1 mJy e_S39768 ?=0 rms uncertainty on S39768 351-356 F6.3 --- a ?=0 Best fit parameter a (1) 359-364 F6.3 --- b ?=0 Best fit parameter b (1) 367-372 F6.3 GHz nu0 ?=0 Best fit parameter ν0 (1) 376-380 F5.3 Jy S0 ?=0 Best fit parameter S0 (1) 384-388 F5.3 --- chi2 ?=0 χ2 of fit (1) -------------------------------------------------------------------------------- Note (1): Best fit parameters in the double power law: S(ν)=S0/[(ν/ν0)-a+(ν/ν0)-b], where ν is the frequency and S is the flux density in Jy. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 14 A14 --- AT20G AT20G name 16- 24 F9.5 deg RAdeg Right ascension (J2000) 26- 34 F9.5 deg DEdeg Declination (J2000) 35- 48 A14 --- Btype Blazar type ("QSO RLoud" or "Uncertain") (1) 50- 54 F5.3 --- z ? Redshift (2) 56- 68 A13 --- Stype Spectral type based on PACO data (complex, down-turning, flat, peaked, or self-absorbed; see Section 2.2) 70- 74 F5.2 GHz nup ? Peak frequency νp 76- 79 F4.1 GHz nup2 ? Peak frequency computed taking into account Planck/ERCSC data 81- 86 F6.2 GHz num ? Rest-frame peak frequency νm -------------------------------------------------------------------------------- Note (1): The blazar type is taken from Massaro et al. (2009, Cat. J/A+A/495/691) for the 24 sources in the BZCAT. Note (2): The redshifts are from Mahony et al. (2011MNRAS.417.2651M 2011MNRAS.417.2651M) and Massaro et al. (2009, J/A+A/495/691). -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Patricia Vannier [CDS] 31-Jan-2014
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line