J/MNRAS/433/2812 ATLAS3D project. XXIII. (Krajnovic+, 2013)
The ATLAS3D project.
XXIII. Angular momentum and nuclear surface brightness profiles.
Krajnovic D., Karick A.M., Davies R.L., Naab T., Sarzi M., Emsellem E.,
Cappellari M., Serra P., De Zeeuw P.T., Scott N., Mcdermid R.M.,
Weijmans A.-M., Davis T.A., Alatalo K., Blitz L., Bois M., Bureau M.,
Bournaud F., Crocker A., Duc P.-A., Khochfar S., Kuntschner H.,
Morganti R., Oosterloo T., Young L.M.
<Mon. Not. R. Astron. Soc., 433, 2812-2839 (2013)>
=2013MNRAS.433.2812K 2013MNRAS.433.2812K
ADC_Keywords: Surveys ; Galaxy catalogs ; Morphology
Keywords: galaxies: elliptical and lenticular, cD - galaxies: evolution -
galaxies: formation - galaxies: kinematics and dynamics -
galaxies: nuclei - galaxies: structure
Abstract:
We investigate nuclear light profiles in 135 ATLAS3D galaxies for
which the Hubble Space Telescope (HST) imaging is available and
compare them to the large-scale kinematics obtained with the SAURON
integral-field spectrograph. Specific angular momentum, λR,
correlates with the shape of nuclear light profiles, where, as
suggested by previous studies, cores are typically found in slow
rotators and core-less galaxies are fast rotators. As also shown
before, cores are found only in massive galaxies and only in systems
with the stellar mass (measured via dynamical models)
M≳8x1010M☉. Based on our sample, we, however, see no evidence
for a bimodal distribution of nuclear slopes. The best predictor for
finding a core is based on the stellar velocity dispersion within an
effective radius, σe, and specific angular momentum, where
cores are found for λ_R≲0.25 and σe≳160km/s. We
estimate that only about 10percent of nearby early-type galaxies
contain cores. Furthermore, we show that there is a genuine population
of fast rotators with cores. We also show that core fast rotators are
morphologically, kinematically and dynamically different from core
slow rotators. The cores of fast rotators, however, could harbour
black holes of similar masses to those in core slow rotators, but
typically more massive than those found in core-less fast rotators.
Cores of both fast and slow rotators are made of old stars and found
in galaxies typically lacking molecular or atomic gas (with a few
exceptions). Core-less galaxies, and especially core-less fast
rotators, are underluminous in the diffuse X-ray emission, but the
presence of a core does not imply high X-ray luminosities.
Additionally, we postulate (as many of these galaxies lack HST
imaging) a possible population of core-less galaxies among slow
rotators, which cannot be explained as face-on discs, but comprise a
genuine sub-population of slow rotators. These galaxies are typically
less massive and flatter than core slow rotators, and show evidence
for dynamical cold structures and exponential photometric components.
Based on our findings, major non-dissipative (gas-poor) mergers
together with black hole binary evolution may not be the only path for
formation of cores in early-type galaxies. We discuss possible
processes for formation of cores and their subsequent preservation.
Description:
The ATLAS3D sample is defined in Paper I and consists of 260
early-type galaxies, visually selected from a magnitude (brighter than
-21.5mag in the K band) and volume-limited (within 42 Mpc) parent
sample. The full sample was observed with the integral-field
spectrograph (IFS) SAURON (Bacon et al. 2001MNRAS.326...23B 2001MNRAS.326...23B) mounted
on William Herschel Telescope. The extraction of kinematics from the
SAURON data is described in Paper I (Cappellari et al.,
2011MNRAS.413..813C 2011MNRAS.413..813C) and Emsellem et al. (2004MNRAS.352..721E 2004MNRAS.352..721E), for the
sub-sample of 48 galaxies previously presented in the SAURON survey.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablec1.dat 81 122 *Fitting parameters for ATLAS3D galaxies.
--------------------------------------------------------------------------------
Note on tablec1.dat: Only galaxies from the ATLAS3D sample for which we were
able to perform 'Nuker-law' are included.
--------------------------------------------------------------------------------
See also:
J/MNRAS/413/813 : ATLAS3D project. I (Cappellari+, 2011)
J/MNRAS/414/888 : ATLAS3D project. III (Emsellem+, 2011)
J/MNRAS/414/940 : ATLAS3D project. IV (Young+, 2011)
J/MNRAS/416/1680 : ATLAS3D project. VII (Cappellari+, 2011)
J/MNRAS/446/120 : ATLAS3D project. XXIX (Duc+, 2015)
J/MNRAS/448/3484 : ATLAS3D Project. XXX (McDermid+, 2015)
Byte-by-byte Description of file: tablec1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 A9 --- Galaxy Galaxy name
10 A1 --- f_Galaxy [+d] Flag (1)
12- 13 A2 --- Src Source (2)
15 A1 --- Class [clp] Class code (3)
17- 21 A5 --- Filter Filter of images analysed in this work
(F475W, F555W, F606W, F702W, or F814W)
23- 28 F6.2 arcsec theta Nuker fit parameter Θ (5)
30- 34 F5.2 --- mu Nuker fit parameter µ (5)
36- 40 F5.2 --- alpha Nuker fit parameter α (5)
42- 46 F5.2 --- beta Nuker fit parameter β (5)
48- 52 F5.2 --- gamma Nuker fit parameter γ (5)
54- 58 F5.2 --- gamma' Nuker fit parameter γ' (5)
60- 63 F4.2 --- rms ?=- root-mean-square of Nuker-law fits done
in this work (5)
65 A1 --- l_rg Limit flag on Rgamma
66- 69 F4.2 arcsec rg Cusp radius (rγ) (5)
71 A1 --- l_Rg Limit flag on Rg
72- 77 F6.2 pc Rg Cusp radius (rγ) in pc
79 A1 --- R/F [F/S] Classification into fast (F) or slow (S)
rotators, from Paper III
81 A1 --- Gr kinematic group from Paper II (4)
--------------------------------------------------------------------------------
Note (1): Flag as follows:
+ = galaxies for which our classification differs from that of Lauer et al.
(2005AJ....129.2138L 2005AJ....129.2138L, Cat. J/AJ/129/218), primarily due to different
definition of γ
d = galaxies for which the 'Nuker' core is not also seen as a partially
depleted core using core-Sersic/Sersic fitting method
Note (2): Sources as follows:
a = data from the ACSVCS (Ferrarese et al. 2006ApJS..164..334F 2006ApJS..164..334F,
Cat J/ApJS/164/334)
b = data from Lauer et al. (2007ApJ...662..808L 2007ApJ...662..808L, 2007ApJ...664..226L 2007ApJ...664..226L,
Cat. J/ApK/662/808, J/ApJ/664/226) originating in:
b1 = Lauer et al. (2005AJ....129.2138L 2005AJ....129.2138L, Cat. J/AJ/129/218)
b2 = Rest et al. (2001AJ....121.2431R 2001AJ....121.2431R)
b3 = (NICMOS images) - Ravindranath et al. (2001AJ....122..653R 2001AJ....122..653R)
b4 = (NICMOS images) - Quillen et al. (2000ApJS..128...85Q 2000ApJS..128...85Q)
c = supplementary archival HST/ACS imaging
d = supplemental archival WFC2/PC1 images
Details of the observations for the archival images are provided in Table 1.
Note (3): Class as follows:
c = core
l = intermediate (grouped with power-law as "core-less" in the text)
p = power-law (grouped with intermediate as "core-less" in the text)
Note (4): kinematic group as follows:
a = non-rotating galaxies
b = featureless non-regular rotators
c = kinematically distinct core (KDC), and counter-rotating cores
d = 2σ peak galaxies
e = regular-rotators
f = unclassified
Note (5): parameters of the "Nuker law" (Lauer et al. 1995AJ....110.2622L 1995AJ....110.2622L)
describing the surface brightness profile of the galaxy; see section 3.2
[Equations (1), (2) and (3)].
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Cappellari et al., Paper I 2011MNRAS.413..813C 2011MNRAS.413..813C, Cat. J/MNRAS/413/813
Krajnovic et al., Paper II 2011MNRAS.414.2923K 2011MNRAS.414.2923K
Emsellem et al., Paper III 2011MNRAS.414..888E 2011MNRAS.414..888E, Cat. J/MNRAS/414/888
Young et al., Paper IV 2011MNRAS.414..940Y 2011MNRAS.414..940Y, Cat. J/MNRAS/414/940
Davis et al., Paper V 2011MNRAS.414..968D 2011MNRAS.414..968D
Bois et al., Paper VI 2011MNRAS.416.1654B 2011MNRAS.416.1654B
Cappellari et al., Paper VII 2011MNRAS.416.1680C 2011MNRAS.416.1680C, Cat. J/MNRAS/416/1680
Khochfar et al., Paper VIII 2011MNRAS.417..845K 2011MNRAS.417..845K
Duc et al., Paper IX 2011MNRAS.417..863D 2011MNRAS.417..863D
Davis et al., Paper X 2011MNRAS.417..882D 2011MNRAS.417..882D
Crocker et al., Paper XI 2012MNRAS.421.1298C 2012MNRAS.421.1298C
Lablanche et al., Paper XII 2012MNRAS.424.1495L 2012MNRAS.424.1495L
Serra et al., Paper XIII 2012MNRAS.422.1835S 2012MNRAS.422.1835S
Krajnovic et al., Paper XIV 2013MNRAS.432.1768K 2013MNRAS.432.1768K
Cappellari et al., Paper XV 2013MNRAS.432.1709C 2013MNRAS.432.1709C
Bayet et al., Paper XVI 2013MNRAS.432.1742B 2013MNRAS.432.1742B
Krajnovic et al., Paper XVII 2013MNRAS.432.1768K 2013MNRAS.432.1768K
Alatalo et al., Paper XVIII 2013MNRAS.432.1796A 2013MNRAS.432.1796A
Sarzi et al., Paper XIX 2013MNRAS.432.1845S 2013MNRAS.432.1845S
Cappellari et al., Paper XX 2013MNRAS.432.1862C 2013MNRAS.432.1862C
Scott et al., Paper XXI 2013MNRAS.432.1894S 2013MNRAS.432.1894S
Martig et al., Paper XXII 2013MNRAS.432.1914M 2013MNRAS.432.1914M
Davis et al., Paper XXIV 2013MNRAS.429..534D 2013MNRAS.429..534D
Cappellari et al., Paper XXV 2013MNRAS.432.1709C 2013MNRAS.432.1709C
Bayet et al., Paper XXVI 2013MNRAS.432.1742B 2013MNRAS.432.1742B
Krajnovic et al., Paper XXVII 2013MNRAS.432.1768K 2013MNRAS.432.1768K
Alatalo et al., Paper XXVIII 2013MNRAS.432.1796A 2013MNRAS.432.1796A
McDermid et al., Paper XXX 2015MNRAS.448.3484M 2015MNRAS.448.3484M, Cat. J/MNRAS/448/3484
(End) Patricia Vannier [CDS] 18-Jul-2014