J/MNRAS/437/532     VY CMa molecular line spectra            (Matsuura+, 2014)

Herschel SPIRE and PACS observations of the red supergiant VY CMa: analysis of the molecular line spectra. Matsuura M., Yates J.A., Barlow M.J., Swinyard B.M., Royer P., Cernicharo J., Decin L., Wesson R., Polehampton E.T., Blommaert J.A.D.L., Groenewegen M.A.T., Van De Steene G.C., van Hoof P.A.M. <Mon. Not. R. Astron. Soc., 437, 532-546 (2014)> =2014MNRAS.437..532M 2014MNRAS.437..532M (SIMBAD/NED BibCode)
ADC_Keywords: Stars, supergiant ; Spectroscopy Keywords: radiative transfer - stars: individual: VY CMa - stars: mass-loss - ISM: molecules - infrared: stars - submillimetre: stars Abstract: We present an analysis of the far-infrared and submillimetre molecular emission-line spectrum of the luminous M-supergiant VY CMa, observed with the Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer for Herschel spectrometers aboard the Herschel Space Observatory. Over 260 emission lines were detected in the 190-650µm SPIRE Fourier Transform Spectrometer spectra, with one-third of the observed lines being attributable to H2O. Other detected species include CO, 13CO, H2O, SiO, HCN, SO, SO2, CS, H2S and NH3. Our model fits to the observed 12CO and 13CO line intensities yield a 12C/13C ratio of 5.6±1.8, consistent with measurements of this ratio for other M-supergiants, but significantly lower than previously estimated for VY CMa from observations of lower-J lines. The spectral line energy distribution for 20 SiO rotational lines shows two temperature components: a hot component at ∼1000K, which we attribute to the stellar atmosphere and inner wind, plus a cooler ∼200K component, which we attribute to an origin in the outer circumstellar envelope. We fit the line fluxes of 12CO, 13CO, H2O and SiO, using the smmol non-local thermodynamic equilibrium (LTE) line transfer code, with a mass-loss rate of 1.85x10-4M/yr between 9R* and 350R*. We also fit the observed line fluxes of 12CO, 13CO, H2O and SiO with smmol non-LTE line radiative transfer code, along with a mass-loss rate of 1.85x10-4M/yr. To fit the high rotational lines of CO and H2O, the model required a rather flat temperature distribution inside the dust condensation radius, attributed to the high H2O opacity. Beyond the dust condensation radius the gas temperature is fitted best by an r-0.5 radial dependence, consistent with the coolant lines becoming optically thin. Our H2O emission-line fits are consistent with an ortho:para ratio of 3 in the outflow. Description: The Herschel Space Observatory (hereafter Herschel) was launched in 2009 May with three instruments on board: SPIRE, PACS and HIFI . We report here observations made with the SPIRE Fourier Transform Spectrometer (FTS) and with the PACS grating spectrometer, which together cover the wavelength range from 55 to 650um. The SPIRE FTS covers the 190-650um wavelength range, simultaneously, while the PACS spectrometer covers the 55-210um spectral range, similar to that covered by the Long Wavelength Spectrometer (LWS) on board the Infrared Space Observatory (ISO), although with higher spectral resolution and greater sensitivity. Objects: ------------------------------------------------ RA (2000) DE Designation(s) ------------------------------------------------ 07 22 58.33 -25 46 03.2 VY CMa = V* VY CMa ------------------------------------------------ File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea2.dat 119 170 VY CMa line fluxes and identifications (IDs) in the SPIRE FTS SLW spectra tablea3.dat 121 288 VY CMa: Line fluxes and identifications in the SPIRE FTS SSW spectra -------------------------------------------------------------------------------- See also: J/ApJS/190/348 : 1mm spectral survey of IRC+10216 + VY CMa (Tenenbaum+, 2010) J/A+A/551/A113 : Spectrum of VY CMa in 220.65-224.25GHz range (Kaminski+, 2013) Byte-by-byte Description of file: tablea2.dat tablea3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 F6.3 cm-1 nuobs1 ? Observed wavenumber (OD123) 8- 13 F6.1 10-18W/m2 F1 ? VY CMa line flux (OD123) 15- 19 F5.1 10-18W/m2 e_F1 ? rms uncertainty on F1 (1) 21- 26 F6.3 cm-1 nuobs2 ? Observed wavenumber (OD317) 27 A1 --- u_nuobs2 [?] Uncertainty flag on nuobs2 29- 33 F5.3 cm-1 e_nuobs2 ? rms uncertainty on nuobs2 (1) 35- 40 F6.1 10-18W/m2 F2 ? VY CMa line flux (OD317) 42- 46 F5.1 10-18W/m2 e_F2 ? rms uncertainty on F2 48 A1 --- n_nu0 [+] for blend (2) 49- 54 F6.3 cm-1 nu0 ? Vacuum wavenumber 55 A1 --- u_nu0 [?] Uncertainty flag on nu0 57- 63 F7.2 GHz Fnu0 ? Vacuum frequency 65- 70 F6.2 um lambda0 ? Vacuum wavelength 71 A1 --- u_lambda0 [?] Uncertainty flag on lambda0 73- 82 A10 --- Species Species 84-121 A38 ---- Trans Transition (3) -------------------------------------------------------------------------------- Note (1): The listed uncertainties for the line fluxes are those from the line fitting. Note (2): An ID row beginning with a '+' indicates that the line is blended with that on the row above. Note (3): The quantum numbers are J except where stated. H2O transitions are given in the format JKa'Kc'-JKaKc. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Patricia Vannier [CDS] 10-Mar-2015
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line