J/MNRAS/437/968   AGN automatic photometric classification     (Cavuoti+, 2014)
Photometric classification of emission line galaxies with machine-learning
methods.
    Cavuoti S., Brescia M., D'Abrusco R., Longo G., Paolillo M.
   <Mon. Not. R. Astron. Soc. 437, 968 (2014)>
   =2014MNRAS.437..968C 2014MNRAS.437..968C
ADC_Keywords: Active gal. nuclei ; Surveys ; Galaxy catalogs ; Photometry, SDSS
Keywords: methods: data analysis - catalogues - surveys - galaxies: active -
          galaxies: Seyfert
Abstract:
    In this paper, we discuss an application of machine-learning-based
    methods to the identification of candidate active galactic nucleus
    (AGN) from optical survey data and to the automatic classification
    ofAGNs in broad classes. We applied four different machine-learning
    algorithms, namely the Multi Layer Perceptron, trained, respectively,
    with the Conjugate Gradient, the Scaled Conjugate Gradient, the Quasi
    Newton learning rules and the Support Vector Machines, Q4 to tackle
    the problem of the classification of emission line galaxies in
    different classes, mainly AGNs versus non-AGNs, obtained using optical
    photometry in place of the diagnostics based on line intensity ratios
    which are classically used in the literature. Using the same
    photometric features, we discuss also the behaviour of the classifiers
    on finer AGN classification tasks, namely Seyfert I versus Seyfert II,
    and Seyfert versus LINER. Furthermore, we describe the algorithms
    employed, the samples of spectroscopically classified galaxies used to
    train the algorithms, the procedure followed to select the photometric
    parameters and the performances of our methods in terms of multiple
    statistical indicators. The results of the experiments show that the
    application of self-adaptive data mining algorithms trained on
    spectroscopic data sets and applied to carefully chosen photometric
    parameters represents a viable alternative to the classical methods
    that employ time-consuming spectroscopic observations.
Description:
    Photometric catalog of 3,201,824 candidate AGN objects. The objects
    are referred to the SDSS DR4 archive (table Galaxy).
File Summary:
--------------------------------------------------------------------------------
 FileName    Lrecl  Records   Explanations
--------------------------------------------------------------------------------
ReadMe          80        .   This file
dame_agn.dat    96  3201824   Candidate AGN objects from SDSS-DR4
--------------------------------------------------------------------------------
See also:
   II/267 : The SDSS Photometric Catalog, Release 4 (Adelman-McCarthy+, 2006)
   http://www.sdss.org : SDSS Home Page
Byte-by-byte Description of file: dame_agn.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label   Explanations
--------------------------------------------------------------------------------
   1- 18  I18   ---     objID   Unique SDSS identifier
  20- 28  F9.5  deg     RAdeg   Right Ascension (J2000)
  30- 38  F9.5  deg     DEdeg   Declination (J2000)
  40- 46  F7.5  ---     zph     [0/0.3] Photometric redshift, computed from
                                D'Abrusco et al., 2007ApJ...663..752D 2007ApJ...663..752D
  49- 54  F6.3  mag     rmag    r band flux in 3" diameter of the fiber radius
  56- 62  F7.3  mag     u-g     u-g color index from deredenned SDSS magnitudes
  64- 70  F7.3  mag     g-r     g-r color index from deredenned SDSS magnitudes
  72- 78  F7.3  mag     r-i     r-i color index from deredenned SDSS magnitudes
  80- 86  F7.3  mag     i-z     i-z color index from deredenned SDSS magnitudes
  89- 94  F6.3  mag     rmag0   Simplified r magnitude corrected for extinction
      96  I1    ---     AGN     [1/3] Quality Flag of the AGN classification:
                                      1=basic, 2=medium, 3=high quality
--------------------------------------------------------------------------------
Acknowledgements:
    Stefano Cavuoti, stefano.cavuoti(at)gmail.com
History:
  * 30-Oct-2013: original file from the first author
  * 22-Jun-2014: file reformatted (removed useless digits)
(End)  Stefano Cavuoti [INAF-OACN, Italy], Patricia Vannier [CDS]    30-Oct-2013