J/MNRAS/437/968   AGN automatic photometric classification     (Cavuoti+, 2014)

Photometric classification of emission line galaxies with machine-learning methods. Cavuoti S., Brescia M., D'Abrusco R., Longo G., Paolillo M. <Mon. Not. R. Astron. Soc. 437, 968 (2014)> =2014MNRAS.437..968C 2014MNRAS.437..968C
ADC_Keywords: Active gal. nuclei ; Surveys ; Galaxy catalogs ; Photometry, SDSS Keywords: methods: data analysis - catalogues - surveys - galaxies: active - galaxies: Seyfert Abstract: In this paper, we discuss an application of machine-learning-based methods to the identification of candidate active galactic nucleus (AGN) from optical survey data and to the automatic classification ofAGNs in broad classes. We applied four different machine-learning algorithms, namely the Multi Layer Perceptron, trained, respectively, with the Conjugate Gradient, the Scaled Conjugate Gradient, the Quasi Newton learning rules and the Support Vector Machines, Q4 to tackle the problem of the classification of emission line galaxies in different classes, mainly AGNs versus non-AGNs, obtained using optical photometry in place of the diagnostics based on line intensity ratios which are classically used in the literature. Using the same photometric features, we discuss also the behaviour of the classifiers on finer AGN classification tasks, namely Seyfert I versus Seyfert II, and Seyfert versus LINER. Furthermore, we describe the algorithms employed, the samples of spectroscopically classified galaxies used to train the algorithms, the procedure followed to select the photometric parameters and the performances of our methods in terms of multiple statistical indicators. The results of the experiments show that the application of self-adaptive data mining algorithms trained on spectroscopic data sets and applied to carefully chosen photometric parameters represents a viable alternative to the classical methods that employ time-consuming spectroscopic observations. Description: Photometric catalog of 3,201,824 candidate AGN objects. The objects are referred to the SDSS DR4 archive (table Galaxy). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file dame_agn.dat 96 3201824 Candidate AGN objects from SDSS-DR4 -------------------------------------------------------------------------------- See also: II/267 : The SDSS Photometric Catalog, Release 4 (Adelman-McCarthy+, 2006) http://www.sdss.org : SDSS Home Page Byte-by-byte Description of file: dame_agn.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 18 I18 --- objID Unique SDSS identifier 20- 28 F9.5 deg RAdeg Right Ascension (J2000) 30- 38 F9.5 deg DEdeg Declination (J2000) 40- 46 F7.5 --- zph [0/0.3] Photometric redshift, computed from D'Abrusco et al., 2007ApJ...663..752D 2007ApJ...663..752D 49- 54 F6.3 mag rmag r band flux in 3" diameter of the fiber radius 56- 62 F7.3 mag u-g u-g color index from deredenned SDSS magnitudes 64- 70 F7.3 mag g-r g-r color index from deredenned SDSS magnitudes 72- 78 F7.3 mag r-i r-i color index from deredenned SDSS magnitudes 80- 86 F7.3 mag i-z i-z color index from deredenned SDSS magnitudes 89- 94 F6.3 mag rmag0 Simplified r magnitude corrected for extinction 96 I1 --- AGN [1/3] Quality Flag of the AGN classification: 1=basic, 2=medium, 3=high quality -------------------------------------------------------------------------------- Acknowledgements: Stefano Cavuoti, stefano.cavuoti(at)gmail.com History: * 30-Oct-2013: original file from the first author * 22-Jun-2014: file reformatted (removed useless digits)
(End) Stefano Cavuoti [INAF-OACN, Italy], Patricia Vannier [CDS] 30-Oct-2013
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line