J/MNRAS/451/724 PHAT. XIII. M31 Cepheid P-L relation (Wagner-Kaiser+, 2015)
Panchromatic Hubble Andromeda Treasury.
XIII: The Cepheid period-luminosity relation in M31.
Wagner-Kaiser R., Sarajedini A., Dalcanton J.J., Williams B.F., Dolphin A.
<Mon. Not. R. Astron. Soc., 451, 724-738 (2015)>
=2015MNRAS.451..724W 2015MNRAS.451..724W (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, nearby ; Stars, variable ; Photometry, HST
Keywords: stars: variables: Cepheids - galaxies: individual: M31 -
Local Group - distance scale
Abstract:
Using Hubble Space Telescope Advanced Camera for Surveys (HST/ACS) and
Wide Field Camera 3 (WFC3) observations from the Panchromatic Hubble
Andromeda Treasury (PHAT), we present new period-luminosity (P-L)
relations for Cepheid variables in M31. Cepheids from several
ground-based studies are identified in the PHAT photometry to derive
new P-L and Wesenheit P-L relations in the near infrared and visual
filters. We derive a distance modulus to M31 of 24.51±0.08 in the IR
bands and 24.32±0.09 in the visual bands, including the first P-L
relations in the F475W and F814W filters for M31. Our derived
visual and IR distance moduli disagree at slightly more than a
1σ level. Differences in the P-L relations between ground-based
and HST observations are investigated for a subset of Cepheids. We
find a significant discrepancy between ground-based and HST P-L
relations with the same Cepheids, suggesting adverse effects from
photometric contamination in ground-based Cepheid observations.
Additionally, a statistically significant radial trend in the P-L
relation is found which does not appear to be explained by
metallicity.
Description:
The data used in this paper are obtained from the PHAT photometry of
M31. The PHAT survey coverage, design, and photometry are described at
length in Dalcanton et al. (2012ApJS..200...18D 2012ApJS..200...18D). The observations
utilize the Wide Field Camera 3 (WFC3) in both the ultraviolet-visible
(UVIS) mode and the infrared (IR) mode and the Advanced Camera for
Surveys (ACS) Wide Field Channel (WFC). They cover about one third of
the disc of M31 across six filters (F275W and F336W in the UV with
WFC3; F110W and F160W in the IR with WFC3; F475W and F814W in the
visual bands with ACS). Each HST pointing is two orbits: one orbit for
WFC3/UVIS and one orbit for WFC3/IR (with ACS/WFC in parallel mode).
The coverage of M31 by PHAT is divided into 23 'bricks', each composed
of 18 HST fields of view (in a 6x3 layout, each brick covering a
3x1.5kpc area).
To obtain the largest sample of Cepheid observations possible, we use
multiple Cepheid catalogues: PAndromeda (Kodric et al. 2013, Cat.
J/AJ/145/106), DIRECT (Kaluzny et al. 1998, Cat. J/AJ/115/1016; 1999,
Cat. J/AJ/118/346; Stanek et al. 1998, Cat. J/AJ/115/1894; 1999, Cat.
J/AJ/117/2810; Bonanos et al. 2003, Cat. J/AJ/126/175), and Cepheids
already identified in the PHAT images (Riess et al. 2012, Cat.
J/ApJ/745/156).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 88 175 Complete Cepheid sample
table2.dat 70 80 DIRECT Cepheid sample
--------------------------------------------------------------------------------
See also:
J/AJ/115/1894 : M31A eclipsing binaries and Cepheids (Stanek+ 1998)
J/AJ/115/1016 : M31B eclipsing binaries and Cepheids (Kaluzny+ 1998)
J/AJ/117/2810 : M31C eclipsing binaries and Cepheids (Stanek+, 1999)
J/AJ/118/346 : M31D eclipsing binaries and Cepheids (Kaluzny+ 1999)
J/AJ/126/175 : M31Y eclipsing binaries and Cepheids (Bonanos+, 2003)
J/ApJ/745/156 : M31 Cepheids with HST/WFC3 (Riess+, 2012)
J/AJ/145/106 : M31 Cepheid disk sample of 1st year of PS1 (Kodric+, 2013)
J/ApJ/762/123 : PHAT. IV. Initial Mass Function (Weisz+, 2013)
J/ApJS/215/9 : PHAT X. UV-IR photometry of M31 stars (Williams+, 2014)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 F8.5 deg RAdeg Right ascension (J2000)
10- 17 F8.5 deg DEdeg Declination (J2000)
19- 24 F6.3 mag F475W F475W magnitude
26- 30 F5.3 mag e_F475W rms uncertainty on F475W
32- 37 F6.3 mag F814W F814W magnitude
39- 43 F5.3 mag e_F814W rms uncertainty on F874W
45- 50 F6.3 mag F110W ?=0 F110W magnitude
52- 56 F5.3 mag e_F110W rms uncertainty on F110W
58- 63 F6.3 mag F160W ?=0 F160W magnitude
65- 69 F5.3 mag e_F160W rms uncertainty on F160W
71- 77 F7.4 d Per Period
79- 88 A10 --- Source Source of data (1)
--------------------------------------------------------------------------------
Note (1): Sources of data as follows:
PAndromeda = Kodric et al., Cat. J/AJ/145/106
Riess = Riess et al., Cat. J/ApJ/745/156
DIRECT = DIRECT surveys
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 18 A18 --- DIRECT DIRECT name (1)
20- 27 F8.5 deg RAdeg Right ascension (J2000)
29- 36 F8.5 deg DEdeg Declination (J2000)
38- 43 F6.3 mag F475W F475W magnitude
45- 49 F5.3 mag e_F475W rms uncertainty on F475W
51- 56 F6.3 mag F814W F814W magnitude
58- 62 F5.3 mag e_F814W rms uncertainty on F874W
64- 70 F7.4 d Per Period
--------------------------------------------------------------------------------
Note (1): Nomenclature note:
VNNNN = DIRECT VNNNN M31A, DIRECT VNNNN M31B, DIRECT VNNNN M31C or
DIRECT VNNNN M31D in Simbad
JHHMMSS.s+DDMMSS.s = D31 JHHMMSS.s+DDMMSS.s in Simbad
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Dalcanton et al., 2012ApJS..200...18D 2012ApJS..200...18D
Rosenfield et al., Paper I 2012ApJ...755..131R 2012ApJ...755..131R
Williams et al., Paper II 2012ApJ...759...46W 2012ApJ...759...46W
Beerman et al., Paper III 2012ApJ...760..104B 2012ApJ...760..104B
Weisz et al., Paper IV 2013ApJ...762..123W 2013ApJ...762..123W Cat. J/ApJ/762/123
Fouesneau et al., Paper V 2014ApJ...786..117F 2014ApJ...786..117F
Simones et al., Paper VI 2014ApJ...788...12S 2014ApJ...788...12S
Dong et al., Paper VII 2014ApJ...785..136D 2014ApJ...785..136D
Dalcanton et al., Paper VIII 2015ApJ...814....3D 2015ApJ...814....3D
Veyette et al., Paper IX 2014ApJ...792..121V 2014ApJ...792..121V
Williams et al., Paper X 2014ApJS..215....9W 2014ApJS..215....9W Cat. J/ApJS/215/9
Lewis et al., Paper XI 2015ApJ...805..183L 2015ApJ...805..183L
Gregersen et al. Paper XII 2015AJ....150..189G 2015AJ....150..189G
Wagner-Kaiser et al. Paper XIII 2015MNRAS.451..724W 2015MNRAS.451..724W This catalog
Senchyna et al., Paper XIV 2015ApJ...813...31S 2015ApJ...813...31S
Gordon et al. Paper XV 2016ApJ...826..104G 2016ApJ...826..104G
Johnson et al. Paper XVI 2016ApJ...827...33J 2016ApJ...827...33J Cat. J/ApJ/827/33
Lewis et al. Paper XVII 2017ApJ...834...70L 2017ApJ...834...70L
Johnson et al. Paper XVIII 2017ApJ...839...78J 2017ApJ...839...78J
Williams et al. Paper XIX 2017ApJ...846..145W 2017ApJ...846..145W Cat. J/ApJ/846/145
(End) Patricia Vannier [CDS] 15-Dec-2015