J/MNRAS/452/4326 Metal-rich damped Lyα systems at z∼2 (Berg+, 2015)
The chemistry of the most metal-rich damped Lyman α systems at z ∼ 2.
II. Context with the Local Group.
Berg T.A.M., Ellison S.L., Prochaska J.X., Venn K.A., Dessauges-Zavadsky M.
<Mon. Not. R. Astron. Soc., 452, 4326-4346 (2015)>
=2015MNRAS.452.4326B 2015MNRAS.452.4326B (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies, nearby ; QSOs ; Abundances
Keywords: stars: abundances - galaxies: abundances - galaxies: high-redshift -
galaxies: ISM - quasars: absorption lines
Abstract:
Using our sample of the most metal-rich damped Lyman α systems
(DLAs) at zabs∼2, and two literature compilations of chemical
abundances in 341 DLAs and 2818 stars, we present an analysis of the
chemical composition of DLAs in the context of the Local Group. The
metal-rich sample of DLAs at z_abs∼2 probes metallicities as
high as the Galactic disc and the most metal-rich dwarf spheroidals
(dSphs), permitting an analysis of many elements typically observed in
DLAs (Fe, Zn, Cr, Mn, Si, and S) in comparison to stellar abundances
observed in the Galaxy and its satellites (in particular dSphs). Our
main conclusions are: (1) non-solar [Zn/Fe] abundances in metal-poor
Galactic stars and in dSphs over the full metallicity range probed by
DLAs, suggest that Zn is not a simple proxy for Fe in DLAs and
therefore not a suitable indicator of dust depletion. After correcting
for dust depletion, the majority of DLAs have subsolar [Zn/Fe] similar
to dSphs; (2) at [Fe/H]~-0.5, a constant [Mn/Fe]~-0.5 and
near-solar [α/Fe] (requiring an assumption about dust depletion)
are in better agreement with dwarf galaxies than Galactic disc stars;
(3) [α/Zn] is usually solar or subsolar in DLAs. However,
although low ratios of [α/Fe] are usually considered more
'dwarf-like' than `Milky Way-like', subsolar [Zn/Fe] in Local Group
dwarfs leads to supersolar [α/Zn] in the dSphs, in contrast with
the DLAs. Therefore, whilst DLAs exhibit some similarities with the
Local Group dwarf population, there are also notable differences.
Description:
The comparison of the chemical evolution of DLAs to Local Group
environments requires selecting several samples with accurate metal
abundances. For this work, we have compiled three samples: the most
metal-rich DLAs at zabs>1.5 (further called the MRDLA sample) from
Berg et al. (2015PASP..127..167B 2015PASP..127..167B, further referred to as Paper I), and
two literature compilations of metal abundances in both stars and
DLAs. The properties of these samples are described and compared
below. All abundances (for both stars and DLAs) have been converted to
the Asplund et al. (2009, ARA&A, 47, 481) meteoritic solar scale,
unless otherwise stated.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablea1.dat 329 386 *DLA literature compilation
refs.dat 78 109 References
tablea2.dat 150 2818 Stellar literature compilation
--------------------------------------------------------------------------------
Note on tablea1.dat: MRDLA sample column densities from Berg et al.
(2013MNRAS.434.2892B 2013MNRAS.434.2892B, Berg et al. (2015PASP..127..167B 2015PASP..127..167B; Paper I),
and this paper are included for convinence.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 14 A14 --- QSO QSO name
17- 20 F4.2 --- zem Emission redshift
25- 30 F6.4 --- zabs Absorption redshift
33- 37 F5.2 [cm-2] logN(HI) ?=0 HI column density
41- 44 F4.2 [cm-2] e_logN(HI) ?=0 rms uncertainty on logN(NiII)
48 A1 --- l_logN(NI) Limit flag on logN(NI)
49- 54 F6.2 [cm-2] logN(NI) ?=-99 NI column density
58- 61 F4.2 [cm-2] e_logN(NI) ?=0 rms uncertainty on logN(NI)
65 A1 -- l_logN(OI) Limit flag on logN(OI)
66- 71 F6.2 [cm-2] logN(OI) ?=-99 OI column density
74- 77 F4.2 [cm-2] e_logN(OI) ?=0 rms uncertainty on logN(OI)
81 A1 --- l_logN(MgI) Limit flag on logN(MgI)
82- 87 F6.2 [cm-2] logN(MgI) ?=-99 MgI column density
90- 93 F4.2 [cm-2] e_logN(MgI) ?=0 rms uncertainty on logN(MgI)
97 A1 --- l_logN(MgII) Limt flag on logN(MgII)
98-103 F6.2 [cm-2] logN(MgII) ?=-99 MgII column density
106-109 F4.2 [cm-2] e_logN(MgII) ?=0 rms uncertainty on logN(MgII)
113 A1 --- l_logN(AlII) Limit flag on logN(AlII)
114-119 F6.2 [cm-2] logN(AlII) ?=-99 AlII column density
122-125 F4.2 [cm-2] e_logN(AlII) ?=0 rms uncertainty on logN(AlII)
129 A1 --- l_logN(AlIII) Limit flag on logN(AlIII)
130-135 F6.2 [cm-2] logN(AlIII) ?=-99 AlIII column density
138-141 F4.2 [cm-2] e_logN(AlIII) ?=0 rms uncertainty on logN(AlIII)
145 A1 --- l_logN(SiII) Limit flag on logN(SiII)
146-151 F6.2 [cm-2] logN(SiII) ?=-99 SiII column density
154-157 F4.2 [cm-2] e_logN(SiII) ?=0 rms uncertainty on logN(SiII)
161 A1 --- l_logN(SII) Limit flag on logN(SII)
162-167 F6.2 [cm-2] logN(SII) ?=-99 SII column density
170-173 F4.2 [cm-2] e_logN(SII) ?=0 rms uncertainty on logN(SII)
178-183 F6.2 [cm-2] logN(CaII) ?=-99 CaII column density
186-189 F4.2 [cm-2] e_logN(CaII) ?=0 rms uncertainty on logN(CaII)
193 A1 --- l_logN(TiII) Limit flag on logN(TiII)
194-199 F6.2 [cm-2] logN(TiII) ?=-99 TiII column density
202-205 F4.2 [cm-2] e_logN(TiII) ?=0 rms uncertainty on logN(TiII)
209 A1 --- l_logN(CrII) Limit flag on logN(CrII)
210-215 F6.2 [cm-2] logN(CrII) ?=-99 CrII column density
218-221 F4.2 [cm-2] e_logN(CrII) ?=0 rms uncertainty on logN(CrII)
225 A1 --- l_logN(MnII) Limit flag on logN(MnII)
226-231 F6.2 [cm-2] logN(MnII) ?=-99 MnII column density
234-237 F4.2 [cm-2] e_logN(MnII) ?=0 rms uncertainty on logN(MnII)
241 A1 --- l_logN(FeII) Limit flag on logN(FeII)
242-247 F6.2 [cm-2] logN(FeII) ?=-99 FeII column density
250-253 F4.2 [cm-2] e_logN(FeII) ?=0 rms uncertainty on logN(FeII)
257 A1 --- l_logN(CoII) Limit flag on logN(CoII)
258-263 F6.2 [cm-2] logN(CoII) ?=-99 CoII column density
266-269 F4.2 [cm-2] e_logN(CoII) ?=0 rms uncertainty on logN(CoII)
273 A1 --- l_logN(NiII) Limit flag on logN(NiII)
274-279 F6.2 [cm-2] logN(NiII) ?=-99 NiII column density
282-285 F4.2 [cm-2] e_logN(NiII) ?=0 rms uncertainty on logN(NiII)
289 A1 --- l_logN(ZnII) Limit flag on logN(ZnII)
290-295 F6.2 [cm-2] logN(ZnII) ?=-99 NI column density
298-301 F4.2 [cm-2] e_logN(ZnII) ?=0 rms uncertainty on logN(ZnII)
306-329 A24 --- Ref References, in refs.dat file
--------------------------------------------------------------------------------
Byte-by-byte Description of file: refs.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 I3 --- Ref Reference number
5- 23 A19 --- BibCode BibCode
25- 52 A28 --- Aut Author's name
54- 78 A25 --- Com Comments
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- Name Star name
15- 25 A11 --- Gal Host Galaxy
27- 35 A9 --- Comp Galaxy component
37- 42 F6.2 [-] [O/H] ?=-99 O abundance (1)
45- 50 F6.2 [-] [Mg/H] ?=-99 Mg abundance (1)
53- 58 F6.2 [-] [Al/H] ?=-99 Al abundance (1)
61- 66 F6.2 [-] [Si/H] ?=-99 Si abundance (1)
69- 74 F6.2 [-] [S/H] ?=-99 S abundance (1)
77- 82 F6.2 [-] [Ca/H] ?=-99 Ca abundance (1)
85- 90 F6.2 [-] [Ti/H] ?=-99 Ti abundance (1)
93- 98 F6.2 [-] [Cr/H] ?=-99 Cr abundance (1)
101-106 F6.2 [-] [Mn/H] ?=-99 Mn abundance (1)
109-114 F6.2 [-] [Fe/H] ?=-99 Fe abundance (1)
117-122 F6.2 [-] [Co/H] ?=-99 Co abundance (1)
125-130 F6.2 [-] [Ni/H] ?=-99 Ni abundance (1)
133-138 F6.2 [-] [Zn/H] ?=-99 Zn abundance (1)
141-150 A10 --- Ref References (2)
--------------------------------------------------------------------------------
Note (1): All values are on Asplund et al. (2009, ARA&A, 47, 481) solar scale.
Note (2): References as follows:
1 = Frebel (2010AN....331..474F 2010AN....331..474F)
2 = Venn et al. (2004, Cat. J/AJ/128/1177)
3 = Reddy et al. (2003, Cat. J/MNRAS/340/304)
4 = Reddye et al. (2006, Cat. J/MNRAS/367/1329)
5 = Letarte et al. (2010, Cat. J/A+A/523/A17)
6 = Venn et al. (2012, Cat. J/ApJ/751/102)
7 = Sbordone et al. (2007, Cat. J/A+A/465/815)
8 = Pompeia et al. (Cat. J/A+A/480/379)
9 = Carretta et al. (Cat. J/A+A/520/A95)
10 = Aoki et al. (2009A&A...502..569A 2009A&A...502..569A)
11 = North et al. (2012A&A...541A..45N 2012A&A...541A..45N)
12 = Shetrone et al. (2003AJ....125..684S 2003AJ....125..684S)
13 = Geisler et al. (2005AJ....129.1428G 2005AJ....129.1428G)
14 = Bensby et al. (2005, Cat. J/A+A/433/185)
15 = Bensby et al. (2014, Cat. J/A+A/562/A71)
16 = Starkenburg et al. (2013A&A...549A..88S 2013A&A...549A..88S)
17 = Tafelmeyer et al. (2010A&A...524A..58T 2010A&A...524A..58T)
18 = Fulbright (2000, Cat. J/AJ/120/1841)
19 = Stephens and Boesgaard (2002AJ....123.1647S 2002AJ....123.1647S)
20 = Edvardsson et al. (1993, Cat. J/A+AS/102/603)
21 = Hendricks et al. (2014ApJ...785..102H 2014ApJ...785..102H)
22 = Skuladottir et al. (2015, preprint, arXiv:1505.03155)
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Berg et al., Paper I 2015PASP..127..167B 2015PASP..127..167B
(End) Patricia Vannier [CDS] 15-Mar-2016