J/MNRAS/462/4197    HI 21-cm absorption in redshifted galaxies   (Curran+, 2016)

A comparative study of intervening and associated H I 21-cm absorption profiles in redshifted galaxies. Curran S.J., Duchesne S.W., Divoli A., Allison J.R. <Mon. Not. R. Astron. Soc., 462, 4197-4207 (2016)> =2016MNRAS.462.4197C 2016MNRAS.462.4197C (SIMBAD/NED BibCode)
ADC_Keywords: H I data ; QSOs ; Redshifts ; Radio lines ; Redshifts Keywords: methods: data analysis - galaxies: active - galaxies: high redshift - galaxies: ISM - quasars: absorption lines - radio lines: galaxies Abstract: The star-forming reservoir in the distant Universe can be detected through HI 21-cm absorption arising from either cool gas associated with a radio source or from within a galaxy intervening the sightline to the continuum source. In order to test whether the nature of the absorber can be predicted from the profile shape, we have compiled and analysed all of the known redshifted (z≥0.1) HI 21-cm absorption profiles. Although between individual spectra there is too much variation to assign a typical spectral profile, we confirm that associated absorption profiles are, on average, wider than their intervening counterparts. It is widely hypothesized that this is due to high-velocity nuclear gas feeding the central engine, absent in the more quiescent intervening absorbers. Modelling the column density distribution of the mean associated and intervening spectra, we confirm that the additional low optical depth, wide dispersion component, typical of associated absorbers, arises from gas within the inner parsec. With regard to the potential of predicting the absorber type in the absence of optical spectroscopy, we have implemented machine learning techniques to the 55 associated and 43 intervening spectra, with each of the tested models giving a ≥80 per cent accuracy in the prediction of the absorber type. Given the impracticability of follow-up optical spectroscopy of the large number of 21-cm detections expected from the next generation of large radio telescopes, this could provide a powerful new technique with which to determine the nature of the absorbing galaxy. Description: Unlike at lower redshifts, most of the z≥0.1 detections are already compiled (in Tables 1 and 2, which are updated from Curran & Whiting, 2010ApJ...712..303C 2010ApJ...712..303C and Curran, 2010MNRAS.402.2657C 2010MNRAS.402.2657C, respectively). However, the raw data were generally unavailable and so the spectra were acquired from the literature by digitizing the available figures. For this, we used the GetData Graph Digitizer2 package for all the spectra, except those in Srianand et al. (2015MNRAS.451..917S 2015MNRAS.451..917S) and Yan et al. (2016AJ....151...74Y 2016AJ....151...74Y), which were constructed from Gaussian parameters presented. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 137 57 The features of the z≥0.1 associated 21-cm absorbers table2.dat 137 49 The features of the z≥0.1 intervening 21-cm absorbers -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- IAU IAU name 14- 21 F8.6 --- zweight ? Mean-weighted absorption redshift 24 I1 --- ng ? Number of Gaussian components required to fit the spectrum 26- 29 I4 --- FWZI ? Full width at zero intensity 31- 38 F8.6 --- taupeak ? Peak observed optical depth 40- 47 F8.6 --- B_taupeak ? Maximum peak observed optical depth 49- 56 F8.6 --- b_taupeak ? Minimum peak observed optical depth 57- 63 F7.1 km/s Dv ? Average offset of the components from zweight 65- 71 F7.4 km/s Dv/FWZI ? Average offset of the components from zweight and full width at zero intensity 75- 77 I3 km/s FWHM ? Average full width at half-maxima 79- 81 I3 km/s B_FWHM ? Average full width at half-maxima 83- 87 F5.1 km/s b_FWHM ? Average full width at half-maxima 89- 92 A4 --- Ref Reference for the 21-cm absorption (1) 93-137 A45 --- Com Comments -------------------------------------------------------------------------------- Note (1): References as follows: B01 = Briggs, de Bruyn & Vermeulen (2001A&A...373..113B 2001A&A...373..113B) B83 = Briggs & Wolfe (1983ApJ...268...76B 1983ApJ...268...76B) C92 = Carilli, Perlman & Stocke (1992ApJ...400L..13C 1992ApJ...400L..13C) C93 = Carilli, Rupen & Yanny (1993ApJ...412L..59C 1993ApJ...412L..59C) C98 = Carilli et al. (1998ApJ...494..175C 1998ApJ...494..175C) C11 = Chandola, Sirothia & Saikia (2011MNRAS.418.1787C 2011MNRAS.418.1787C) C99 = Chengalur, de Bruyn & Narasimha (1999A&A...343L..79C 1999A&A...343L..79C) C07a = Curran et al. (2007MNRAS.382L..11C 2007MNRAS.382L..11C) C07b = Curran et al. (2007MNRAS.382.1331C 2007MNRAS.382.1331C) C11a = Curran et al. (2011MNRAS.413.1165C 2011MNRAS.413.1165C) C11b = Curran et al. (2011MNRAS.414L..26C 2011MNRAS.414L..26C) C13 = Curran et al. (2013MNRAS.429.3402C 2013MNRAS.429.3402C) D04 = Darling et al. (2004ApJ...613L.101D 2004ApJ...613L.101D) D78 = Davis & May (1978ApJ...219....1D 1978ApJ...219....1D) E12 = Ellison et al. (2012MNRAS.424..293E 2012MNRAS.424..293E) G15 = Gereb et al. (2015A&A...575A..44G 2015A&A...575A..44G. Cat. J/A+A/575/A44) G06 = Gupta et al. (2006MNRAS.373..972G 2006MNRAS.373..972G) G09a = Gupta et al. (2009, ASP Conf. Ser. Vol. 407, 67) G09b = Gupta et al. (2009MNRAS.398..201G 2009MNRAS.398..201G) G12 = Gupta et al. (2012A&A...544A..21G 2012A&A...544A..21G) G13 = Gupta et al. (2013A&A...558A..84G 2013A&A...558A..84G) I03 = Ishwara-Chandra, Dwarakanath, & Anantharamaiah (2003, JA&A, 24, 37) K01a = Kanekar & Chengalur (2001MNRAS.325..631K 2001MNRAS.325..631K) K01b = Kanekar, Ghosh & Chengalur (2001A&A...373..394K 2001A&A...373..394K) K03a = Kanekar & Briggs (2003A&A...412L..29K 2003A&A...412L..29K) K03b = Kanekar & Chengalur (2003A&A...399..857K 2003A&A...399..857K) K09 = Kanekar et al. (2009MNRAS.396..385K 2009MNRAS.396..385K) K12 = Kanekar et al. (2013MNRAS.428..532K 2013MNRAS.428..532K) K14a = Kanekar et al. (2014MNRAS.438.2131K 2014MNRAS.438.2131K) K14b = Kanekar (2014ApJ...797L..20K 2014ApJ...797L..20K) L01 = Lane & Briggs (2001ApJ...561L..27L 2001ApJ...561L..27L) L96 = Lovell et al. (1996ApJ...472L...5L 1996ApJ...472L...5L) M89 = Mirabel (1989ApJ...340L..13M 1989ApJ...340L..13M) M99 = Moore, Carilli & Menten (1999ApJ...510L..87M 1999ApJ...510L..87M) M01 = Morganti et al. (2001MNRAS.323..331M 2001MNRAS.323..331M) O06 = Orienti, Morganti & Dallacasa (2006A&A...457..531O 2006A&A...457..531O) P00 = Peck et al. (2000ApJ...534..104P 2000ApJ...534..104P) P99 = Peck, Taylor & Conway (1999ApJ...521..103P 1999ApJ...521..103P) R76 = Roberts et al. (1976AJ.....81..293R 1976AJ.....81..293R) S10 = Salter et al. (2010ApJ...715L.117S 2010ApJ...715L.117S) S12 = Srianand et al. (2012MNRAS.421..651S 2012MNRAS.421..651S) S15 = Srianand et al. (2015MNRAS.451..917S 2015MNRAS.451..917S) U91 = Uson, Bagri & Cornwell (1991, Phys. Rev. Lett. 67, 3328) V89 = van Gorkom et al. (1989AJ.....97..708V 1989AJ.....97..708V) V03 = Vermeulen et al. (2003A&A...404..861V 2003A&A...404..861V) Y16 = Yan et al. (2016AJ....151...74Y 2016AJ....151...74Y) Y07 = York et al. (2007MNRAS.382L..53Y 2007MNRAS.382L..53Y) Z15 = Zwaan et al. (2015MNRAS.453.1268Z 2015MNRAS.453.1268Z) -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Patricia Vannier [CDS] 23-Apr-2018
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line