J/MNRAS/465/3039    Eruptive variable protostars from VVV EW (Contreras+, 2017)

Infrared spectroscopy of eruptive variable protostars from VVV. Contreras Pena C., Lucas P.W., Kurtev R., Minniti D., Caratti o Garatti A., Marocco F., Thompson M.A., Froebrich D., Kumar M.S.N., Stimson W., Navarro Molina C., Borissova J., Gledhill T., Terzi R. <Mon. Not. R. Astron. Soc., 465, 3039-3100 (2017)> =2017MNRAS.465.3039C 2017MNRAS.465.3039C (SIMBAD/NED BibCode)
ADC_Keywords: YSOs ; Stars, variable ; Equivalent widths ; Radial velocities Keywords: stars: AGB and post-AGB - stars: low-mass - stars: pre-main-sequence - stars: protostars - stars: variables - T Tauri - Herbig Ae/Be - infrared: stars Abstract: In a companion work (Contreras Pena et al., 2017MNRAS.465.3011C 2017MNRAS.465.3011C, Paper I), we detected a large population of highly variable Young Stellar Objects (YSOs) in the Vista Variables in the Via Lactea (VVV) survey, typically with class I or flat spectrum spectral energy distributions and diverse light-curve types. Here we present infrared spectra (0.9-2.5 µm) of 37 of these variables, many of them observed in a bright state. The spectra confirm that 15/18 sources with eruptive light curves have signatures of a high accretion rate, either showing EXor-like emission features (Δv=2 CO, Brγ) and/or FUor-like features (Δv=2 CO and H2O strongly in absorption). Similar features were seen in some long-term periodic YSOs and faders but not in dippers or short-term variables. The sample includes some dusty Mira variables (typically distinguished by smooth Mira-like light curves), two cataclysmic variables and a carbon star. In total, we have added 19 new objects to the broad class of eruptive variable YSOs with episodic accretion. Eruptive variable YSOs in our sample that were observed at bright states show higher accretion luminosities than the rest of the sample. Most of the eruptive variables differ from the established FUor and EXor subclasses, showing intermediate outburst durations and a mixture of their spectroscopic characteristics. This is in line with a small number of other recent discoveries. Since these previously atypical objects are now the majority amongst embedded members of the class, we propose a new classification for them as MNors. This term (pronounced emnor) follows V1647 Ori, the illuminating star of McNeil's Nebula. Description: We present intermediate resolution IR spectra of 37 VVV high-amplitude variable stars, 18 of which have eruptive LC classification File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 105 37 Characteristics of the spectroscopic sample of VVV high-amplitude variables table3.dat 88 40 Equivalent widths of common features found in near-IR spectra of YSOs detected in our VVV sample table4.dat 28 17 Radial velocities table5.dat 52 23 Accretion luminosity from luminosity of the Brγ line tabled1.dat 93 37 Parameters derived from the Robitaille et al. (2007ApJS..169..328R 2007ApJS..169..328R) models SED fitting as explained in the text -------------------------------------------------------------------------------- See also: J/MNRAS/465/3011 : VVV high amplitude NIR variable stars (Contreras Pena+ 2017) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 I2 --- No Sequential number 4- 10 A7 --- VName Variable name (VVVvNNN, [CLM2017] VVVvNNN in Simbad) 12- 13 I2 h RAh Right ascension (J2000) 15- 16 I2 min RAm Right ascension (J2000) 18- 22 F5.2 s RAs Right ascension (J2000) 24 A1 --- DE- Declination sign (J2000) 25- 26 I2 deg DEd Declination (J2000) 28- 29 I2 arcmin DEm Declination (J2000) 31- 35 F5.2 arcsec DEs Declination (J2000) 37- 41 F5.2 mag Jmag ?=- J magnitude 43- 46 F4.2 mag e_Jmag ?=- rms uncertainty on Jmag 48- 52 F5.2 mag Hmag ?=- H magnitude 54- 57 F4.2 mag e_Hmag ?=- rms uncertainty on Hmag 59- 63 F5.2 mag Ksmag ?=- Ks magnitude 65- 68 F4.2 mag e_Ksmag ?=- rms uncertainty on Ksmag 70- 73 F4.2 mag DKsmag Ksmax-Ksmin difference 75- 79 F5.2 -- alpha ?=- Slope of the SED, from Paper I 81- 83 F3.1 kpc dSFR ?=- likely distance to our objects estimated from SIMBAD 85- 92 A8 --- Shape Shape, from Paper I 94-105 A12 --- Type Type, this paper (1) -------------------------------------------------------------------------------- Note (1): non-er refers to YSOs not classified as eruptive variables. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 16 A16 --- Type Type 18- 24 A7 --- VName Object VName 25- 28 A4 --- n_VName Observation number 32- 37 F6.1 0.1nm EWH2 ?=- H2 (2.12um) equivalent width (1) 39- 42 F4.1 0.1nm e_EWH2 ?=- rms uncertainty on EWH2 44- 47 F4.1 0.1nm EWBrg ?=- Brγ (2.16um) equivalent width (1) 49- 51 F3.1 0.1nm e_EWBrg ?=- rms uncertainty on EWBrg 53- 56 F4.1 0.1nm EWNaI ?=- NaI (2.21um) equivalent width (1) 58- 60 F3.1 0.1nm e_EWNaI ?=- rms uncertainty on EWNaI 62- 64 F3.1 0.1nm EWCaI ?=- CaI (2.26um) equivalent width (1) 66- 68 F3.1 0.1nm e_EWCaI ?=- rms uncertainty on EWCaI 70- 74 F5.1 0.1nm EW12CO ?=- 12CO (2.293um) equivalent width (1) (2) 76- 79 F4.1 0.1nm e_EW12CO ?=- rms uncertainty on EW12CO 81- 84 F4.1 0.1nm EWMgI ?=- MgI (2.28um) equivalent width (1) 86- 88 F3.1 0.1nm e_EWMgI ?=- rms uncertainty on EWMgI -------------------------------------------------------------------------------- Note (1): The EW is estimated by summing (1-Fi/Ci) over wavelength, where Fi and Ci are the flux and the continuum at pixel i. This inevitably has fairly large errors due to uncertainty in the continuum level, even though the individual transitions are often very clearly detected. Note (2): The EW of CO was measured in splot by visually selecting two continuum points around the CO bandhead and estimating the continuum as a linear function between the two points. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- VName Variable name 9- 14 F6.1 km/s Vlsr LSR velocity 16- 19 F4.1 km/s e_Vlsr rms uncertainty on Vlsr 21- 23 F3.1 kpc dnear ?=- Near distance 25- 28 F4.1 kpc dfar Far distance -------------------------------------------------------------------------------- Byte-by-byte Description of file: table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Type Type 14- 20 A7 --- VName Variable name 22- 31 A10 --- State Approximate state (from the LC) at which the spectrum was taken 33- 36 F4.1 mag AKs Absorption in Ks band 37 A1 --- n_AKs Note on AKs (1) 39- 41 F3.1 kpc Dist Distance 42 A1 --- n_Dist Note on Distance (1) 44- 47 F4.1 Lsun Lacc1 Accretion luminosity from Calvet et al. (2004AJ....128.1294C 2004AJ....128.1294C) 49- 52 F4.1 Lsun Lacc2 Accretion luminosity from Muzerolle et al. (1998AJ....116.2965M 1998AJ....116.2965M) -------------------------------------------------------------------------------- Note (1): Notes as follows: c = Distance from SED fit d = Distance from radial velocity e = Distance from dSFR f = Av from line ratios, see Appendix A -------------------------------------------------------------------------------- Byte-by-byte Description of file: tabled1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Type Type 10- 16 A7 --- VName Variable name 18- 21 F4.1 Msun M* Stellar mass 23- 25 F3.1 Msun E_M* Error on M* (upper value) 27- 29 F3.1 Msun e_M* Error on M* (lower value) 31- 34 F4.1 [Msun/yr] logdMenv/dt ?=- Envelope infall rate 36- 38 F3.1 [Msun/yr] e_logdMenv/dt ? rms uncertainty on logdMenv/dt 40- 44 F5.1 [Msun/yr] logdMdisc/dt Disc mass accretion rate 46- 48 F3.1 [Msun/yr] e_logdMdisc/dt rms uncertainty on logdMdisc/dt 50- 52 F3.1 [yr] logAge Age 54- 56 F3.1 [yr] e_logAge rms uncertainty on Age 58- 60 F3.1 kpc Dist Distance to the system 62- 64 F3.1 kpc E_Dist Error on Dist (upper value) 66- 68 F3.1 kpc e_Dist Error on Dist (lower value) 70- 73 F4.1 [Lsun] logLbol Bolometric luminosity of the system 75- 77 F3.1 [Lsun] e_logLbol rms uncertainty on logLbol 79- 82 F4.2 --- chi2/N chi2 per data point of the best-fitting model 84- 88 I5 --- Nfits Number of fits used to derive the weighted mean values 90- 93 I4 --- Nfits2 Number of models which envelope infall rate could be derived -------------------------------------------------------------------------------- History: From electronic version of the journal References: Contreras Pena et al., Paper I 2017MNRAS.465.3011C 2017MNRAS.465.3011C Cat. J/MNRAS/465/3011
(End) Patricia Vannier [CDS] 22-Nov-2018
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line