J/MNRAS/466/3161 AGN global star-forming properties (Shimizu+, 2017)
Herschel far-infrared photometry of the Swift Burst Alert Telescope active
galactic nuclei sample of the local universe.
III. Global star-forming properties and the lack of a connection to nuclear
activity.
Shimizu T.T., Mushotzky R.F., Melendez M., Koss M.J., Barger A.J.,
Cowie L.L.
<Mon. Not. R. Astron. Soc., 466, 3161-3183 (2017)>
=2017MNRAS.466.3161S 2017MNRAS.466.3161S (SIMBAD/NED BibCode)
ADC_Keywords: Active gal. nuclei ; Infrared sources
Keywords: galaxies: active - galaxies: evolution - galaxies: Seyfert -
galaxies: star formation - infrared: galaxies
Abstract:
We combine the HerschelSpace Observatory PACS (Photoconductor Array
Camera and Spectrometer) and SPIRE (Spectral and Photometric Imaging
Receiver) photometry with archival WISE (Wide-field Infrared Survey
Explorer) photometry to construct the spectral energy distributions
(SEDs) for over 300 local (z<0.05), ultrahard X-ray (14-195keV)
selected active galactic nuclei (AGN) from the Swift Burst Alert
Telescope (BAT) 58-month catalogue. Using a simple analytical model
that combines an exponentially cutoff power law with a single
temperature modified blackbody, we decompose the SEDs into a host
galaxy and AGN component. We calculate dust masses, dust temperatures,
and star formation rates (SFRs) for our entire sample and compare them
to a stellar mass-matched sample of local non-AGN galaxies. We find
AGN host galaxies have systematically higher dust masses, dust
temperatures, and SFRs due to the higher prevalence of late-type
galaxies to host an AGN, in agreement with previous studies of the
Swift/BAT AGN. We provide a scaling to convert X-ray luminosities into
8-1000µm AGN luminosities, as well as determine the best mid-to-far
IR colours for identifying AGN-dominated galaxies in the IR regime. We
find that for nearly 30 per cent of our sample, the 70µm emission
contains a significant contribution from the AGN (>0.5), especially at
higher luminosities (L14-195keV>1042.5erg/s). Finally, we measure
the local SFR-AGN luminosity relationship, finding a slope of 0.18,
large scatter (0.37 dex), and no evidence for an upturn at high AGN
luminosity. We conclude with a discussion on the implications of our
results within the context of galaxy evolution with and without AGN
Description:
Using our high-quality Herschel photometry from Melendez et al.
(2014. Cat. J/ApJ/794/152) and Shimizu et al. (2016, Cat.
J/ApJ/794/152) combined with archival WISE 12 and 22um photometry,
we have constructed and modelled the SEDs for over 300 AGN. Our sample
is unique given its nearly unbiased selection based on ultrahard X-ray
detection, as well as its local nature that eliminates possible biases
and source confusion.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 157 313 Best Fit C12 Model Parameters, Luminosities,
and AGN Fractions
--------------------------------------------------------------------------------
See also:
J/ApJ/794/152 : PACS observations of Herschel-BAT sample (Melendez+, 2014)
J/MNRAS/456/3335 : SPIRE observations of Herschel-BAT sample (Shimizu+, 2016)
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 24 A24 --- Name Galaxy name
26 A1 --- l_logMdust Limit flag on logMdust
27- 30 F4.2 [Msun] logMdust ? Dust mass
32- 35 F4.2 [Msun] E_logMdust ? Error on logMdust (upper value)
37- 40 F4.2 [Msun] e_logMdust ? Error on logMdust (lower value)
42- 46 F5.2 K Tdust ? Dust temperature for the MBB component (1)
48- 51 F4.2 K E_Tdust ? Error on Tdust (upper value)
53- 56 F4.2 K e_Tdust ? Error on Tdust (lower value)
58- 61 F4.2 --- alpha ? Slope of the power-law component
63- 66 F4.2 --- E_alpha ? Error on alpha (upper value)
68- 71 F4.2 --- e_alpha ? Error on alpha (lower value)
73- 78 F6.2 um lambdac ? Turnover wavelength
80- 84 F5.2 um E_lambdac ? Error on lambdac (upper value)
86- 90 F5.2 um e_lambdac ? Error on lambdac (lower value)
92 A1 --- l_logLIR Limit flag on logLIR
93- 97 F5.2 [Lsun] logLIR ? Total infrared luminosity from 8 to 1000um
99-102 F4.2 [Lsun] E_logLIR ? Error on logLIR (upper value)
104-107 F4.2 [Lsun] e_logLIR ? Error on logLIR (lower value)
109 A1 --- l_logLSF Limit flag on logLSF
110-114 F5.2 [Lsun] logLSF ? MBB component luminosity
116-119 F4.2 [Lsun] E_logLSF ? Error on logLSF (upper value)
121-124 F4.2 [Lsun] e_logLSF ? Error on logLSF (lower value)
126 A1 --- l_logLAGNIR Limit on logLAGNIR
127-131 F5.2 [Lsun] logLAGNIR ? Power-law component luminosity
133-136 F4.2 [Lsun] E_logLAGNIR ? Error on logLAGNIR (upper value)
138-141 F4.2 [Lsun] e_logLAGNIR ? Error on logLAGNIR (lower value)
143 A1 --- l_fAGNC12 Limit flag on fAGNC12
144-147 F4.2 --- fAGNC12 ? Fractional contribution of the AGN to the
total infrared luminosity
149-152 F4.2 --- E_fAGNC12 ? Error on fAGNC12 (upper value)
154-157 F4.2 --- e_fAGNC12 ? Error on fAGNC12 (upper value)
--------------------------------------------------------------------------------
Note (1): No value indicates the dust temperature was fixed at 23K.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
References:
Melendez et al., Paper I 2014ApJ...794..152M 2014ApJ...794..152M, Cat. J/ApJ/794/152
Shimizu et al., Paper II 2016MNRAS.456.3335S 2016MNRAS.456.3335S, Cat. J/MNRAS/456/3335
(End) Patricia Vannier [CDS] 23-Oct-2019