J/MNRAS/466/3161    AGN global star-forming properties       (Shimizu+, 2017)

Herschel far-infrared photometry of the Swift Burst Alert Telescope active galactic nuclei sample of the local universe. III. Global star-forming properties and the lack of a connection to nuclear activity. Shimizu T.T., Mushotzky R.F., Melendez M., Koss M.J., Barger A.J., Cowie L.L. <Mon. Not. R. Astron. Soc., 466, 3161-3183 (2017)> =2017MNRAS.466.3161S 2017MNRAS.466.3161S (SIMBAD/NED BibCode)
ADC_Keywords: Active gal. nuclei ; Infrared sources Keywords: galaxies: active - galaxies: evolution - galaxies: Seyfert - galaxies: star formation - infrared: galaxies Abstract: We combine the HerschelSpace Observatory PACS (Photoconductor Array Camera and Spectrometer) and SPIRE (Spectral and Photometric Imaging Receiver) photometry with archival WISE (Wide-field Infrared Survey Explorer) photometry to construct the spectral energy distributions (SEDs) for over 300 local (z<0.05), ultrahard X-ray (14-195keV) selected active galactic nuclei (AGN) from the Swift Burst Alert Telescope (BAT) 58-month catalogue. Using a simple analytical model that combines an exponentially cutoff power law with a single temperature modified blackbody, we decompose the SEDs into a host galaxy and AGN component. We calculate dust masses, dust temperatures, and star formation rates (SFRs) for our entire sample and compare them to a stellar mass-matched sample of local non-AGN galaxies. We find AGN host galaxies have systematically higher dust masses, dust temperatures, and SFRs due to the higher prevalence of late-type galaxies to host an AGN, in agreement with previous studies of the Swift/BAT AGN. We provide a scaling to convert X-ray luminosities into 8-1000µm AGN luminosities, as well as determine the best mid-to-far IR colours for identifying AGN-dominated galaxies in the IR regime. We find that for nearly 30 per cent of our sample, the 70µm emission contains a significant contribution from the AGN (>0.5), especially at higher luminosities (L14-195keV>1042.5erg/s). Finally, we measure the local SFR-AGN luminosity relationship, finding a slope of 0.18, large scatter (0.37 dex), and no evidence for an upturn at high AGN luminosity. We conclude with a discussion on the implications of our results within the context of galaxy evolution with and without AGN Description: Using our high-quality Herschel photometry from Melendez et al. (2014. Cat. J/ApJ/794/152) and Shimizu et al. (2016, Cat. J/ApJ/794/152) combined with archival WISE 12 and 22um photometry, we have constructed and modelled the SEDs for over 300 AGN. Our sample is unique given its nearly unbiased selection based on ultrahard X-ray detection, as well as its local nature that eliminates possible biases and source confusion. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 157 313 Best Fit C12 Model Parameters, Luminosities, and AGN Fractions -------------------------------------------------------------------------------- See also: J/ApJ/794/152 : PACS observations of Herschel-BAT sample (Melendez+, 2014) J/MNRAS/456/3335 : SPIRE observations of Herschel-BAT sample (Shimizu+, 2016) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 24 A24 --- Name Galaxy name 26 A1 --- l_logMdust Limit flag on logMdust 27- 30 F4.2 [Msun] logMdust ? Dust mass 32- 35 F4.2 [Msun] E_logMdust ? Error on logMdust (upper value) 37- 40 F4.2 [Msun] e_logMdust ? Error on logMdust (lower value) 42- 46 F5.2 K Tdust ? Dust temperature for the MBB component (1) 48- 51 F4.2 K E_Tdust ? Error on Tdust (upper value) 53- 56 F4.2 K e_Tdust ? Error on Tdust (lower value) 58- 61 F4.2 --- alpha ? Slope of the power-law component 63- 66 F4.2 --- E_alpha ? Error on alpha (upper value) 68- 71 F4.2 --- e_alpha ? Error on alpha (lower value) 73- 78 F6.2 um lambdac ? Turnover wavelength 80- 84 F5.2 um E_lambdac ? Error on lambdac (upper value) 86- 90 F5.2 um e_lambdac ? Error on lambdac (lower value) 92 A1 --- l_logLIR Limit flag on logLIR 93- 97 F5.2 [Lsun] logLIR ? Total infrared luminosity from 8 to 1000um 99-102 F4.2 [Lsun] E_logLIR ? Error on logLIR (upper value) 104-107 F4.2 [Lsun] e_logLIR ? Error on logLIR (lower value) 109 A1 --- l_logLSF Limit flag on logLSF 110-114 F5.2 [Lsun] logLSF ? MBB component luminosity 116-119 F4.2 [Lsun] E_logLSF ? Error on logLSF (upper value) 121-124 F4.2 [Lsun] e_logLSF ? Error on logLSF (lower value) 126 A1 --- l_logLAGNIR Limit on logLAGNIR 127-131 F5.2 [Lsun] logLAGNIR ? Power-law component luminosity 133-136 F4.2 [Lsun] E_logLAGNIR ? Error on logLAGNIR (upper value) 138-141 F4.2 [Lsun] e_logLAGNIR ? Error on logLAGNIR (lower value) 143 A1 --- l_fAGNC12 Limit flag on fAGNC12 144-147 F4.2 --- fAGNC12 ? Fractional contribution of the AGN to the total infrared luminosity 149-152 F4.2 --- E_fAGNC12 ? Error on fAGNC12 (upper value) 154-157 F4.2 --- e_fAGNC12 ? Error on fAGNC12 (upper value) -------------------------------------------------------------------------------- Note (1): No value indicates the dust temperature was fixed at 23K. -------------------------------------------------------------------------------- History: From electronic version of the journal References: Melendez et al., Paper I 2014ApJ...794..152M 2014ApJ...794..152M, Cat. J/ApJ/794/152 Shimizu et al., Paper II 2016MNRAS.456.3335S 2016MNRAS.456.3335S, Cat. J/MNRAS/456/3335
(End) Patricia Vannier [CDS] 23-Oct-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line