J/MNRAS/469/2313     Radio pulsars post-glitchs             (Gugercinoglu, 2017)

Post-glitch exponential relaxation of radio pulsars and magnetars in terms of vortex creep across flux tubes. Gugercinoglu E. <Mon. Not. R. Astron. Soc., 469, 2313-2322 (2017)> =2017MNRAS.469.2313G 2017MNRAS.469.2313G (SIMBAD/NED BibCode)
ADC_Keywords: Pulsars ; Magnetic fields Keywords: dense matter - stars: magnetars - stars: magnetic fields - stars: neutron - pulsars: general Abstract: Timing observations of rapidly rotating neutron stars revealed a great number of glitches, observed from both canonical radio pulsars and magnetars. Among them, 76 glitches have shown exponential relaxation(s) with characteristic decay times ranging from several days to a few months, followed by a more gradual recovery. Glitches displaying exponential relaxation with single or multiple decay time constants are analysed in terms of a model based on the interaction of the vortex lines with the toroidal arrangement of flux tubes in the outer core of the neutron star. Model results agree with the observed time-scales in general. Thus, the glitch phenomenon can be used to deduce valuable information about neutron star structure, in particular on the interior magnetic field configuration which is unaccessible from surface observations. One immediate conclusion is that the magnetar glitch data are best explained with a much cooler core and therefore require that direct Urca-type fast-cooling mechanisms should be effective for magnetars. Description: In this work, the response of vortex creep against toroidal flux tubes to a glitch is confronted with the existing glitch observations in the literature. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file sources.dat 34 36 List of studied pulsars table1.dat 158 89 *Radio pulsar glitches displaying post-glitch exponential decay are confronted with the model -------------------------------------------------------------------------------- Note on table1.dat: Glitch data are taken from Manchester et al. (2005AJ....129.1993M 2005AJ....129.1993M, Cat. B/psr) and ATNF Glitch Table (http:www.atnf.csiro.au/people/pulsar/psrcat/glitchTbl.html). -------------------------------------------------------------------------------- See also: http:www.atnf.csiro.au/people/pulsar/psrcat : ATNF pulsar catalog home page Byte-by-byte Description of file: sources.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Pulsar Pulsar name 12- 13 I2 h RAh Simbad Right ascension (J2000) 15- 16 I2 min RAm Simbad Right ascension (J2000) 18- 22 F5.2 s RAs Simbad Right ascension (J2000) 24 A1 --- DE- Simbad Declination sign (J2000) 25- 26 I2 deg DEd Simbad Declination (J2000) 28- 29 I2 arcmin DEm Simbad Declination (J2000) 31- 34 F4.1 arcsec DEs Simbad Declination (J2000) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 A10 --- Pulsar Pulsar name 12- 17 F6.2 10+4yr Age Characteristic age 19- 23 F5.2 10+12gauss Bd Surface dipole (at equator) 25- 28 F4.2 10+14gauss Bphi Interior toroidal field strength 30- 40 F11.5 d Date Glitch observation date (MJD) 43- 51 F9.5 d e_Date ? rms uncertainty on Date or lower error value 53- 56 F4.2 d E_Date ? Upper error value on Date 59- 66 F8.2 10-9 Dnug/nu ? Glitch magnitude, {DELTA}νg/ν 69- 75 F7.2 10-9 e_Dnug/nu ? rms uncertainty on Dnug/nu 78- 84 F7.3 10-3 Jump ? Glitch jump in the spin-down rate, {DELTA}dνg/dt/(dν/dt) 87- 92 F6.3 10-3 e_Jump ? rms uncertainty on Jump 95-102 F8.6 --- Q ? Glitch healing parameter 105-112 F8.6 --- e_Q ? rms uncertainty on Q or lower error value 114-116 F3.1 --- E_Q ? Upper error value on Q 118-124 F7.2 d taud ? Observed exponential decay time-scale 126-131 F6.2 d e_taud ? rms uncertainty on taud or lower error value 133-135 F3.1 d E_taud ? Upper error value on taud 137-142 I6 d tautor1 Toroidal relaxation time-scale For Model 1 144-150 F7.1 d tautor2 Toroidal relaxation time-scale For Model 2 152-158 F7.1 d tautor3 Toroidal relaxation time-scale For Model 3 -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Patricia Vannier [CDS] 08-Apr-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line