J/MNRAS/470/1462    HOPS. III. Dense molecular gas properties (Longmore+, 2017)

H2O Southern Galactic Plane Survey (HOPS): Paper III. Properties of dense molecular gas across the inner Milky Way. Longmore S.N., Walsh A.J., Purcell C.R., Burke D.J., Henshaw J., Walker D., Urquhart J., Barnes A.T., Whiting M., Burton M.G., Breen S.L., Britton T., Brooks K.J., Cunningham M.R., Green J.A., Harvey-smith L., Hindson L., Hoare M.G., Indermuehle B., Jones P.A., Lo N., Lowe V., Moore T.J.T., Thompson M.A., Voronkov M.A. <Mon. Not. R. Astron. Soc., 470, 1462-1490 (2017)> =2017MNRAS.470.1462L 2017MNRAS.470.1462L (SIMBAD/NED BibCode)
ADC_Keywords: Galactic plane ; Masers ; Radio lines ; Line Profiles Keywords: line: profiles - masers - stars: formation - ISM: evolution - radio lines: ISM Abstract: The H2O Southern Galactic Plane Survey (HOPS) has mapped 100deg2 of the Galactic plane for water masers and thermal molecular line emission using the 22m Mopra telescope. We describe the automated spectral-line fitting pipelines used to determine the properties of emission detected in HOPS data cubes, and use these to derive the physical and kinematic properties of gas in the survey. A combination of the angular resolution, sensitivity, velocity resolution and high critical density of lines targeted make the HOPS data cubes ideally suited to finding precursor clouds to the most massive and dense stellar clusters in the Galaxy. We compile a list of the most massive HOPS ammonia regions and investigate whether any may be young massive cluster progenitor gas clouds. HOPS is also ideally suited to trace the flows of dense gas in the Galactic Centre. We find the kinematic structure of gas within the inner 500pc of the Galaxy is consistent with recent predictions for the dynamical evolution of gas flows in the centre of the Milky Way. We confirm a recent finding that the dense gas in the inner 100pc has an oscillatory kinematic structure with characteristic length-scale of 20pc, and also identify similar oscillatory kinematic structure in the gas at radii larger than 100pc. Finally, we make all of the above fits and the remaining HOPS data cubes across the 100deg2 of the survey available to the community. Description: We have described the automated spectral-line fitting pipelines developed to determine the properties of spectral-line emission for HOPS data cubes. We then used this to determine the characteristic molecular gas properties in the HOPS sample from the NH3 emission. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tableb1.dat 114 687 Output from the automated spectral line fitting procedure tableb2.dat 39 64 Derived gas properties for sources with robust NH3 (1,1) and NH3 (2,2) detections -------------------------------------------------------------------------------- See also: J/MNRAS/416/1764 : H2O Southern Galactic Plane Survey (HOPS) (Walsh+, 2011) J/MNRAS/426/1972 : H2O Southern Galactic Plane Survey. II (Purcell+, 2012) Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 F7.3 deg GLON Galactic longitude (1) 9- 14 F6.3 deg GLAT Galactic latitude (1) 16- 20 F5.2 K T11Bm ? Best fit NH3(1,1) peak brightness temperature of the main component 22- 25 F4.2 K e_T11Bm ? rms uncertainty on T11Bm 27- 33 F7.2 km/s V11lsr ? Best fit NH3(1,1) line-centre velocity 35- 38 F4.2 km/s e_V11lsr ? rms uncertainty on V11lsr 40- 44 F5.2 km/s DV11 ? Best fit NH3(1,1) line width 46- 50 F5.2 km/s e_DV11 ? rms uncertainty on DV11 52- 56 F5.2 --- taum11 ? Opacity of the NH3(1,1) transition 58- 62 F5.2 --- e_taum11 ? rms uncertainty on taum11 64- 68 F5.2 K T11ex ? Excitation temperature of the NH3(1,1) transition 70- 75 F6.2 K.km/s IntT22BdV ? NH3(2,2) integrated intensity 77- 81 F5.2 K.km/s e_IntT22BdV ? rms uncertainty on IntT22BdV 83- 89 F7.2 km/s V22lsr ? Best fit NH3(2,2) line-centre velocity 91- 95 F5.2 km/s e_V22lsr ? rms uncertainty on V22lsr 97-101 F5.2 km/s DV22 ? Best fit NH3(2,2) line width 103-107 F5.2 km/s e_DV22 ? rms uncertainty on DV22 109-114 F6.2 K T22B ? Best fit NH3(2,2) peak brightness temperature -------------------------------------------------------------------------------- Note (1): Galactic positions of the region taken from the source name in Paper II. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 F9.5 deg GLON Galactic longitude 11- 18 F8.5 deg GLAT Galactic latitude 20- 21 I2 K Trot Rotational temperature, for the peak NH3 (1,1) pixel 23- 26 F4.2 10+14cm-3 NH3 Total NH3 column density, for the peak NH3 (1,1) pixel 28- 29 I2 K Tkin Kinetic temperature, for the peak NH3 (1,1) pixel 31- 34 F4.2 km/s DVnt Non-thermal contributions to the line width, for the peak NH3 (1,1) pixel 36- 39 F4.2 km/s DVth Thermal contributions to the line width, for the peak NH3 (1,1) pixel -------------------------------------------------------------------------------- History: From electronic version of the journal References: Walsh et al., Paper I 2011MNRAS.416.1764W 2011MNRAS.416.1764W, Cat. J/MNRAS/416/1764 Purcell et al., Paper II 2012MNRAS.426.1972P 2012MNRAS.426.1972P, Cat. J/MNRAS/426/1972
(End) Patricia Vannier [CDS] 23-Apr-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line