J/MNRAS/482/965  Age of the Galactic stellar halo from Gaia WDs  (Kilic+, 2019)

The age of the Galactic stellar halo from Gaia white dwarfs. Kilic M., Bergeron P., Dame K., Hambly N.C., Rowell N., Crawford C.L. <Mon. Not. R. Astron. Soc., 482, 965-979 (2019)> =2019MNRAS.482..965K 2019MNRAS.482..965K (SIMBAD/NED BibCode)
ADC_Keywords: Stars, white dwarf ; Stellar distribution ; Velocity dispersion ; Photometry Keywords: stars: evolution - white dwarfs - Galaxy: stellar content Abstract: We use 156044 white dwarf candidates with ≥5σ significant parallax measurements from the Gaia mission to measure the velocity dispersion of the Galactic disc; (σUVW)=(30.8,23.9,20.0)km/s. We identify 142 objects that are inconsistent with disc membership at the >5σ level. This is the largest sample of field halo white dwarfs identified to date. We perform a detailed model atmosphere analysis using optical and near-infrared photometry and parallaxes to constrain the mass and cooling age of each white dwarf. The white dwarf cooling ages of our targets range from 7Myr for J1657+2056 to 10.3Gyr for J1049-7400. The latter provides a firm lower limit of 10.3Gyr for the age of the inner halo based on the well-understood physics of white dwarfs. Including the pre-white dwarf evolutionary lifetimes, and limiting our sample to the recently formed white dwarfs with cooling ages of <500Myr, we estimate an age of 10.9±0.4Gyr (internal errors only) for the Galactic inner halo. The coolest white dwarfs in our sample also give similar results. For example, J1049-7400 has a total age of 10.9-11.1Gyr. Our age measurements are consistent with other measurements of the age of the inner halo, including the white dwarf based measurements of the globular clusters M4, NGC 6397, and 47 Tuc. Description: We queried the Gaia data base for objects with plx≥5σplx significant parallaxes, and followed the recommendations outlined in Lindegren et al. (2018A&A...616A...2L 2018A&A...616A...2L, Cat. I/345) to remove non-Gaussian outliers in colour and absolute magnitude. We employed the astrometric and photometric quality cuts outlined in appendix C of Lindegren et al. (2018A&A...616A...2L 2018A&A...616A...2L, Cat. I/345). We used a simple cut in (GBP-GRP, MG) space keeping only those sources fainter than the line joining (-1,5) and (5,25) to identify the clearly subluminous stellar objects relative to the main sequence. The query returned 156044 sources. We take a conservative approach, and select only those objects with velocities that are more than 5σ away from this boundary as members of the Galactic halo. There are 142 white dwarfs that are clearly not compatible with a disc origin. As expected for a halo population, the majority of these velocity outliers lag behind the disc with V~-200km/s. Table 1 presents the Gaia Source identifications, spectral types, positions, parallaxes, proper motions, photometry, and UVW space velocities for each target. Table 2 presents the preferred composition, best-fitting effective temperature, mass, surface gravity, and the cooling age of each white dwarf. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 605 142 Gaia halo white dwarf sample table2.dat 115 210 Best-fitting parameters for the halo white dwarf sample -------------------------------------------------------------------------------- See also: I/345 : Gaia DR2 (Gaia Collaboration, 2018) V/139 : The SDSS Photometric Catalog, Release 9 (Adelman-McCarthy+, 2012) II/349 : The Pan-STARRS release 1 (PS1) Survey - DR1 (Chambers+, 2016) II/359 : The VISTA Hemisphere Survey (VHS) catalog DR4.1 (McMahon+, 2013) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 19 I19 --- GaiaDR2 Gaia DR2 source ID 21- 39 A19 --- Name Star name (JHHMMSS.ss+DDMMSS.s) 41- 45 A5 --- SpType Spectral type 47- 65 F19.15 deg RAdeg Right Ascension (ICRS) at Ep=2015.5 from Gaia DR2 67- 79 F13.9 deg DEdeg Declination (ICRS) at Ep=2015.5 from Gaia DR2 81- 92 F12.9 mas plx Parallax from Gaia DR2 94-105 F12.7 --- Rplx Gaia DR2 parallax divided by its error 107-121 F15.9 mas/yr pmRA Proper motion in right ascension from Gaia DR2 123-133 F11.9 mas/yr e_pmRA Error on pmRA 135-149 F15.9 mas/yr pmDE Proper motion in declination from Gaia DR2 151-161 F11.9 mas/yr e_pmDE Error on pmDE 163-171 F9.6 mag Gmag Gaia G band magnitude 173-182 F10.5 --- RFG Mean flux in the G-band divided by its error 184-192 F9.6 mag BPmag Gaia BP magnitude 194-204 F11.7 --- RFBP Integrated BP mean flux divided by its error 206-214 F9.6 mag RPmag Gaia RP magnitude 216-225 F10.6 --- RFRP Integrated RP mean flux divided by its error 227-233 F7.4 mag gPmag ?=99.99 PanSTARRs g-band magnitude (Kaiser et al. 2010SPIE.7733E..0EK, Cat. II/349 ) 235-241 F7.4 mag e_gPmag ?=99.99 Error on gPmag 243-249 F7.4 mag rPmag ?=99.99 PanSTARRs r-band magnitude (Kaiser et al. 2010SPIE.7733E..0EK, Cat. II/349 ) 251-257 F7.4 mag e_rPmag ?=99.99 Error on rPmag 259-265 F7.4 mag iPmag ?=99.99 PanSTARRs i-band magnitude (Kaiser et al. 2010SPIE.7733E..0EK, Cat. II/349 ) 267-273 F7.4 mag e_iPmag ?=99.99 Error on iPmag 275-281 F7.4 mag zPmag ?=99.99 PanSTARRs z-band magnitude (Kaiser et al. 2010SPIE.7733E..0EK, Cat. II/349 ) 283-289 F7.4 mag e_zPmag ?=99.99 Error on zPmag 291-297 F7.4 mag yPmag ?=99.99 PanSTARRs y-band magnitude (Kaiser et al. 2010SPIE.7733E..0EK, Cat. II/349 ) 299-305 F7.4 mag e_yPmag ?=99.99 Error on yPmag 307-315 F9.6 mag umag ?=99.99 SDSS u band magnitude (Ahn et al. 2012ApJS..203...21A 2012ApJS..203...21A, Cat. V/139) 317-328 F12.9 mag e_umag ?=99.99 Error on umag 330-339 F10.7 mag gmag ?=99.99 SDSS g band magnitude (Ahn et al. 2012ApJS..203...21A 2012ApJS..203...21A, Cat. V/139) 341-352 F12.9 mag e_gmag ?=99.99 Error on gmag 354-362 F9.6 mag rmag ?=99.99 SDSS r band magnitude (Ahn et al. 2012ApJS..203...21A 2012ApJS..203...21A, Cat. V/139) 364-375 F12.9 mag e_rmag ?=99.99 Error on rmag 377-385 F9.6 mag imag ?=99.99 SDSS i band magnitude (Ahn et al. 2012ApJS..203...21A 2012ApJS..203...21A, Cat. V/139) 387-398 F12.9 mag e_imag ?=99.99 Error on imag 400-408 F9.6 mag zmag ?=99.99 SDSS z band magnitude (Ahn et al. 2012ApJS..203...21A 2012ApJS..203...21A, Cat. V/139) 410-421 F12.9 mag e_zmag ?=99.99 Error on xmag 423-430 F8.3 km/s U U component of space velocity 432-437 F6.3 km/s e_U Error on U 439-446 F8.3 km/s V V component of space velocity 448-453 F6.3 km/s e_V Error on V 455-462 F8.3 km/s W W component of space velocity 464-469 F6.3 km/s e_W Error on W 471-478 F8.5 mag YMKOmag ?=0. Y-band magnitude from the UK Infrared Telescope (UKIRT) on Mauna Kea Observatory (MKO) (Dye et al. 2018MNRAS.473.5113D 2018MNRAS.473.5113D) 480-486 F7.5 mag e_YMKOmag ?=0. Error on YMKOmag 488-495 F8.5 mag JMKOmag ?=0. J-band magnitude from the UK Infrared Telescope (UKIRT) on Mauna Kea Observatory (MKO) (Dye et al. 2018MNRAS.473.5113D 2018MNRAS.473.5113D) 497-503 F7.5 mag e_JMKOmag ?=0. Error on JMKOmag 505-512 F8.5 mag HMKOmag ?=0. H-band magnitude from the UK Infrared Telescope (UKIRT) on Mauna Kea Observatory (MKO) (Dye et al. 2018MNRAS.473.5113D 2018MNRAS.473.5113D) 514-520 F7.5 mag e_HMKOmag ?=0. Error on HMKOmag 522-529 F8.5 mag KMKOmag ?=0. K-band magnitude from the UK Infrared Telescope (UKIRT) on Mauna Kea Observatory (MKO) (Dye et al. 2018MNRAS.473.5113D 2018MNRAS.473.5113D) 531-537 F7.5 mag e_KMKOmag ?=0. Error on KMKOmag 539-546 F8.5 mag YVIRmag ?=0. Y band magnitude from VISTA Hemisphere Survey (McMahon et al. 2013Msngr.154...35M 2013Msngr.154...35M, Cat. II/359) 548-554 F7.5 mag e_YVIRmag ?=0. Error on YVIRmag 556-563 F8.5 mag JVIRmag ?=0. J band magnitude from VISTA Hemisphere Survey (McMahon et al. 2013Msngr.154...35M 2013Msngr.154...35M, Cat. II/359) 565-571 F7.5 mag e_JVIRmag ?=0. Error on JVIRmag 573-580 F8.5 mag HVIRmag ?=0. H band magnitude from VISTA Hemisphere Survey (McMahon et al. 2013Msngr.154...35M 2013Msngr.154...35M, Cat. II/359) 582-588 F7.5 mag e_HVIRmag ?=0. Error on HVIRmag 590-597 F8.5 mag KsVIRmag ?=0. Ks band magnitude from VISTA Hemisphere Survey (McMahon et al. 2013Msngr.154...35M 2013Msngr.154...35M, Cat. II/359) 599-605 F7.5 mag e_KsVIRmag ?=0. Error on KsVIRmag -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 19 A19 --- Name Star name (JHHMMSS.ss+DDMMSS.s) 21- 26 A6 --- SpType ?=- Spectral type 28- 39 A12 --- Comp Preferred composition (1) 41- 45 I5 K Teff Best-fitting effective temperature 47- 50 I4 K e_Teff Error on Teff 52- 56 F5.3 Msun Mstar Best-fitting white dwarf mass 58- 62 F5.3 Msun E_Mstar Upper error on Mstar 64- 68 F5.3 Msun e_Mstar Lower error on Mstar 70- 74 F5.3 [cm/s2] logg Best-fitting surface gravity 76- 80 F5.3 [cm/s2] E_logg Upper error on logg 82- 86 F5.3 [cm/s2] e_logg Lower error on logg 88- 92 I5 Myr cAge Best-fitting cooling age 94- 97 I4 Myr E_cAge Upper error on cAge 99-102 I4 Myr e_cAge Lower error on cAge 104-107 F4.1 Gyr Age ? Total age based on the pre-white dwarf evolutionary lifetimes (2) 109-111 F3.1 Gyr E_Age ? Upper error on Age 113-115 F3.1 Gyr e_Age ? Lower error on Age -------------------------------------------------------------------------------- Note (1): We inspected the model fits for all 142 targets and decided on the atmospheric composition based on the Hα line profiles (if available), the quality of the fits for all of the photometric bands, and the presence or absence of a near-infrared flux deficit due to molecular hydrogen. We cannot distinguish between the pure H or pure He atmosphere solutions for 70 targets, as both sets of models provide acceptable fits to the observed SEDs. We present both H and He atmosphere solutions for these 70 objects. Note (2): Kalirai (2012Natur.486...90K 2012Natur.486...90K) used the recently formed white dwarfs in the 12.5Gyr old globular cluster M4 and the results from a Hubble Space Telescope imaging survey of 60 globular clusters (Sarajedini et al. 2007AJ....133.1658S 2007AJ....133.1658S, Cat. J/AJ/133/1658) to derive a relation that links the mass of remnants forming today to the parent population's age: log(Age)=(log(Mstar+0.270)-0.201)/-0.272 Gyr. Note that this equation overestimates the total ages for the coolest white dwarfs. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Ana Fiallos [CDS] 23-Jun-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line