J/MNRAS/484/5330  High-redshift strong lens candidates from DES  (Jacobs+, 2019)

Finding high-redshift strong lenses in DES using convolutional neural networks. Jacobs C., Collett T., Glazebrook K., McCarthy C., Qin A.K., Abbott T.M.C., Abdalla F.B., Annis J., Avila S., Bechtol K., Bertin E., Brooks D., Buckley-Geer E., Burke D.L., Carnero Rosell A., Carrasco Kind M., Carretero J., Da Costa L.N., Davis C., De Vicente J., Desai S., Diehl H.T., Doel P., Eifler T.F., Flaugher B., Frieman J., Garcia-Bellido J., Gaztanaga E., Gerdes D.W., Goldstein D.A., Gruen D., Gruendl R.A., Gschwend J., Gutierrez G., Hartley W.G., Hollowood D.L., Honscheid K., Hoyle B., James D.J., Kuehn K., Kuropatkin N., Lahav O., Li T.S., Lima M., Lin H., Maia M.A.G., Martini P., Miller C.J., Miquel R., Nord B., Plazas A.A., Sanchez E., Scarpine V., Schubnell M., Serrano S., Sevilla-Noarbe I., Smith M., Soares-Santos M., Sobreira F., Suchyta E., Swanson M.E.C., Tarle G., Vikram V., Walker A.R., Zhang Y., Zuntz J., (The DES Collaboration) <Mon. Not. R. Astron. Soc., 484, 5330-5349 (2019)> =2019MNRAS.484.5330J 2019MNRAS.484.5330J (SIMBAD/NED BibCode)
ADC_Keywords: Gravitational lensing; Photometry, ugriz; Redshifts Keywords: gravitational lensing: strong; methods: statistical Abstract: We search Dark Energy Survey (DES) Year 3 imaging data for galaxy-galaxy strong gravitational lenses using convolutional neural networks. We generate 250000 simulated lenses at redshifts>0.8 from which we create a data set for training the neural networks with realistic seeing, sky and shot noise. Using the simulations as a guide, we build a catalogue of 1.1 million DES sources with 1.8<g-i<5, 0.6<g-r<3, rmag>19, g_mag>20, and imag>18.2. We train two ensembles of neural networks on training sets consisting of simulated lenses, simulated non-lenses, and real sources. We use the neural networks to score images of each of the sources in our catalogue with a value from 0 to 1, and select those with scores greater than a chosen threshold for visual inspection, resulting in a candidate set of 7301 galaxies. During visual inspection, we rate 84 as "probably" or "definitely" lenses. Four of these are previously known lenses or lens candidates. We inspect a further 9428 candidates with a different score threshold, and identify four new candidates. We present 84 new strong lens candidates, selected after a few hours of visual inspection by astronomers. This catalogue contains a comparable number of high-redshift lenses to that predicted by simulations. Based on simulations, we estimate our sample to contain most discoverable lenses in this imaging and at this redshift range. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table4.dat 62 84 New candidates from visual inspection of the neural network-selected sources -------------------------------------------------------------------------------- See also: II/357 : The Dark Energy Survey (DES): Data Release 1 (Abbott+, 2018) II/371 : The Dark Energy Survey (DES): Data Release 2 (Abott+, 2021) J/ApJ/690/1236 : COSMOS photometric redshift catalog (Ilbert+, 2009) J/MNRAS/413/813 : ATLAS3D project. I. (Cappellari+, 2011) J/ApJ/749/38 : CFHTLS-SL2S-ARCS strong lens candidates (More+, 2012) J/ApJ/785/144 : SL2S galaxy-scale sample of lens candidates (Gavazzi+, 2014) J/MNRAS/465/4914 : R-band light curves of HE 0435-1223 (Bonvin+, 2017) J/ApJS/232/15 : Candidate strong lens systems from DES obs. (Diehl+, 2017) J/ApJS/243/17 : Strong DES lens cand. from neural networks (Jacobs+, 2019) J/ApJS/259/27 : DES Bright Arcs Survey: strong lens syst. (O'Donnell+, 2022) Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- --- [DES] 4- 13 A10 --- DES System candidate designation (JHHMM+DDMM) 15- 23 I9 --- ObjID [66052645/507569548] Object identifier from DES 25- 32 F8.4 deg RAdeg Right ascension in decimal degrees (J2000) 34- 41 F8.4 deg DEdeg [-65.1/0.7] Declination in decimal degrees (J2000) 43- 46 F4.2 --- Grade [1/3] Grade (3=most certainly containing a lens) (1) 48- 52 F5.2 mag imag [18.69/22.57] i-band magnitude 54- 57 F4.2 --- zphot [0.43/0.86] Photometric redshift 59- 62 F4.2 --- e_zphot [0.28/0.48] zphot uncertainty -------------------------------------------------------------------------------- Note (1): We manually examine images with scores greater than a chosen threshold and grade them 0-3, where 0=not a lens, 1=possibly a lens, 2=probably a lens, and 3=definitely a lens. See Section 3. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Emmanuelle Perret [CDS] 09-Jun-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line