J/MNRAS/488/1519     Calibration of the virial factor f in SMBHs     (Yu+, 2019)

Calibration of the virial factor f in supermassive black hole masses of reverberation-mapped AGNs. Yu L.-M., Bian W.-H., Wang C., Zhao B.-X., Ge X. <Mon. Not. R. Astron. Soc., 488, 1519-1534 (2019)> =2019MNRAS.488.1519Y 2019MNRAS.488.1519Y (SIMBAD/NED BibCode)
ADC_Keywords: Active gal. nuclei ; QSOs ; Galaxies, Seyfert ; Velocity dispersion ; Spectra, optical ; Balmer lines Keywords: galaxies: active - galaxies: nuclei - quasars: emission lines - quasars: general - galaxies: Seyfert Abstract: Using a compiled sample of 34 broad-line active galactic nuclei (AGNs) with measured Hβ time lags from the reverberation mapping (RM) method and measured bulge stellar velocity dispersions σ*, we calculate the virial factor f by assuming that the RM AGNs intrinsically obey the same MBH* relation as quiescent galaxies, where MBH is the mass of the supermassive black hole (SMBH). Considering four tracers of the velocity of the broad-line regions (BLRs), i.e. the Hβ line width or line dispersion from the mean or rms spectrum, there are four kinds of the factor f. Using the Hβ full width at half-maximum (FWHM) to trace the BLRs velocity, we find significant correlations between the factor f and some observational parameters, e.g. FWHM, the line dispersion. Using the line dispersion to trace the BLRs velocity, these relations disappear or become weaker. It implies the effect of inclination in BLRs geometry. It also suggests that the variable f in MBH estimated from luminosity and FWHM in a single-epoch spectrum is not negligible. Using a simple model of thick-disc BLRs, we also find that, as the tracer of the BLRs velocity, Hβ FWHM has some dependence on the inclination, while the line dispersion σ is insensitive to the inclination. Considering the calibrated FWHM-based factor f from the mean spectrum, the scatter of the SMBH mass is 0.39dex for our sample of 34 low-redshift RM AGNs. For a high-redshift sample of 30 Sloan Digital Sky Survey RM AGNs with measured stellar velocity dispersions, we find that the SMBH mass scatter is larger than that for our sample of 34 low-redshift RM AGNs. It implies the possibility of evolution of the MBH* relation from high-redshift to low-redshift AGNs. Description: Up to now, there are about 120 AGNs with measured Hβ/Hα lags from the RM method (e.g. Grier et al. 2017ApJ...851...21G 2017ApJ...851...21G, Cat. J/ApJ/851/21; Du et al. 2018ApJ...856....6D 2018ApJ...856....6D, Cat. J/ApJ/856/6). Our sample consists of 34 low redshift broad-line AGNs (z less than 0.1 except PG 1617+175) with both measured Hβ lags and reliable σ*, which allows us to calibrate the factor f based on the MBH* relation. A total of 32 of these 34 RM AGNs are selected from Ho & Kim (2014ApJ...789...17H 2014ApJ...789...17H), who had imaged these objects and classified them into three bulge types: elliptical, classical bulge (CB) and pseudo-bulge PB. For Fairall 9, the stellar velocity dispersion is adopted from its near-infrared spectrum (Oliva et al. 1995A&A...301...55O 1995A&A...301...55O). Beyond the sample of Ho & Kim (2014ApJ...789...17H 2014ApJ...789...17H), there are two additional objects. The first one is an early-type galaxy NGC 5273 from Bentz et al. (2014ApJ...796....8B 2014ApJ...796....8B). The second one is MCG+06-26-012 with PB. Its RM result is from Du et al. (2015ApJ...806...22D 2015ApJ...806...22D, Cat. J/ApJ/806/22) and its stellar velocity dispersion is adopted from Woo et al. (2015ApJ...801...38W 2015ApJ...801...38W). For our sample of these 34 RM AGNs, there are 8 classified as ellipticals, 9 classified as CBs, 17 classified as PBs. Here we do not use a high-z sample of 48 AGNs (z∼0.1-1.0) from the Sloan Digital Sky Survey (SDSS) RM Project (Grier et al. 2017ApJ...851...21G 2017ApJ...851...21G, Cat. J/ApJ/851/21) with measured Hβ/Hα lags (44 Hβ lag, 18 Hα lags) to do the calibration of f. There are 30 of 48 AGNs with measured σ* by Shen et al. (2015ApJ...805...96S 2015ApJ...805...96S, Cat. J/ApJ/805/96). We use this high-z sample to investigate the evolution of the MBH* relation. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 204 46 The low-z RM AGNs sample with measured σ* for the calibration of f table2.dat 138 40 The high-z RM AGNs observed by SDSS with measured σ* table3.dat 164 46 The MBH and four kinds factor of the low-z RM AGNs sample in Table 1 table6.dat 92 21 The factor f derived from the BLRs dynamical model, X-ray variability, resolved Pa α emission region for 19 AGNs -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 13 A13 --- Name AGN name 15- 22 A8 --- OName Other name 24- 27 F4.2 --- RFe ? Ratio of optical FeII and Hβ flux from Du et al. (2016ApJ...818L..14D 2016ApJ...818L..14D, Cat. J/ApJ/818/L14) 29- 31 I3 km/s sigma Stellar velocity dispersion 33- 34 I2 km/s e_sigma Error on sigma 36 A1 --- r_sigma Reference for sigma (1) 38- 41 A4 --- BType Bulge type (G1) 43- 47 F5.2 10-7W lambdaL Host-corrected monochromatic luminosity at 5100Å 49- 52 F4.2 10-7W e_lambdaL Error on lambdaL 54 A1 --- r_lambdaL Reference for lambdaL (1) 56- 60 F5.1 d tau Rest-frame Hβ time lag 62- 65 F4.1 d E_tau Upper error on tau 67 A1 --- r_tau Reference for tau (1) 69- 72 F4.1 d e_tau Lower error on tau 74- 78 I5 km/s FWHMmean ? Broad Hβ FWHMmean from the mean spectrum 80- 82 I3 km/s e_FWHMmean ? Error on FWHMmean 84 A1 --- r_FWHMmean Reference for FWHMmean (1) 86- 90 I5 km/s FWHMrms ? Broad Hβ FWHMrms from the rms spectrum 92- 95 I4 km/s e_FWHMrms ? Error on FWHMrms 97 A1 --- r_FWHMrms Reference for FWHMrms (1) 99-102 I4 km/s sigHb ? Broad Hβ line dispersion σHβ,mean from the mean spectrum 104-106 I3 km/s e_sigHb ? Error on sigHb 108 A1 --- r_sigHb Reference for sigHb (1) 110-113 I4 km/s sigHbrms ? Broad Hβ line dispersion σHβ,rms from the rms spectrum 115-117 I3 km/s e_sigHbrms ? Error on sigHbrms 119 A1 --- r_sigHbrms Reference for sigHbrms (1) 121-126 F6.1 10+6Msun VPFm ? Virial product calculated based on FWHMmean 128-132 F5.1 10+6Msun E_VPFm ? Upper error on VPFm 134-138 F5.1 10+6Msun e_VPFm ? Lower error on VPFm 140-144 F5.1 10+6Msun VPsm ? Virial product calculated based on sigHb 146-150 F5.2 10+6Msun E_VPsm ? Upper error on VPsm 152-156 F5.2 10+6Msun e_VPsm ? Lower error on VPsm 158-163 F6.1 10+6Msun VPFrms ? Virial product calculated based on FWHMrms 165-170 F6.2 10+6Msun E_VPFrms ? Upper error on VPFrms 172-177 F6.2 10+6Msun e_VPFrms ? Lower error on VPFrms 179-183 F5.1 10+6Msun VPsrms ? Virial product calculated based on sigHbrms 185-190 F6.2 10+6Msun E_VPsrms ? Upper error on VPsrms 192-196 F5.2 10+6Msun e_VPsrms ? Lower error on VPsrms 198-204 A7 --- refs References (2) -------------------------------------------------------------------------------- Note (1): References as follows: a = Williams et al. (2018ApJ...866...75W 2018ApJ...866...75W; 4.2) b = Barth et al. (2015ApJS..217...26B 2015ApJS..217...26B, Cat. J/ApJS/217/26; table 5) c = Du et al. (2016ApJ...818L..14D 2016ApJ...818L..14D, Cat. J/ApJ/818/L14; table 1) d = Du et al. (2015ApJ...806...22D 2015ApJ...806...22D, Cat. J/ApJ/806/22; tables 6 and 7) e = Collin et al. (2006A&A...456...75C 2006A&A...456...75C; table 1) f = Bentz et al. (2014ApJ...796....8B 2014ApJ...796....8B) g = Woo et al. (2015ApJ...801...38W 2015ApJ...801...38W; table 1) h = Wang et al. (2014ApJ...793..108W 2014ApJ...793..108W, Cat. J/ApJ/793/108) i = Oliva et al. (1995A&A...301...55O 1995A&A...301...55O) Note (2): References as follows: 1 = Ho & Kim (2014ApJ...789...17H 2014ApJ...789...17H) 2 = Du et al. (2016ApJ...818L..14D 2016ApJ...818L..14D, Cat. J/ApJ/818/L14) 3 = Williams et al. (2018ApJ...866...75W 2018ApJ...866...75W) 4 = Barth et al. (2015ApJS..217...26B 2015ApJS..217...26B, Cat. J/ApJS/217/26) 5 = Du et al. (2015ApJ...806...22D 2015ApJ...806...22D, Cat. J/ApJ/806/22) 6 = Collin et al. (2006A&A...456...75C 2006A&A...456...75C) 7 = Bentz et al. (2014ApJ...796....8B 2014ApJ...796....8B) 8 = Woo et al. (2015ApJ...801...38W 2015ApJ...801...38W) 9 = Wang et al. (2014ApJ...793..108W 2014ApJ...793..108W, Cat. J/ApJ/793/108) 10 = Oliva et al. (1995A&A...301...55O 1995A&A...301...55O) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 A6 --- Line Observed line 8- 13 A6 --- Name AGN name 15- 19 F5.3 --- z Redshift 21- 25 F5.1 km/s sigma Star velocity dispersion 27- 30 F4.1 km/s e_sigma Error on sigma 32- 36 I5 km/s FWHMmean Broad line FWHMmean from the mean spectrum 38- 40 I3 km/s e_FWHMmean Error on FWHMmean 42- 46 I5 km/s FWHMrms Broad line FWHMrms from the rms spectrum 48- 50 I3 km/s e_FWHMrms Error on FWHMrms 52- 55 I4 km/s sigmean Broad line dispersion from the mean spectrum 57- 58 I2 km/s e_sigmean Error on sigmean 60- 63 I4 km/s sigrms Broad line dispersion from the rms spectrum 65- 66 I2 km/s e_sigrms Error on sigrms 68- 73 F6.1 10+6Msun VPFm Virial product calculated based on FWHMmean (1) 75- 79 F5.1 10+6Msun E_VPFm Upper error on VPFm 81- 85 F5.1 10+6Msun e_VPFm Lower error on VPFm 87- 91 F5.1 10+6Msun VPsm Virial product calculated based on sigmean (1) 93- 97 F5.1 10+6Msun E_VPsm Upper error on VPsm 99-102 F4.1 10+6Msun e_VPsm Lower error on VPsm 104-109 F6.1 10+6Msun VPFrms Virial product calculated based on FWHMrms (1) 111-115 F5.1 10+6Msun E_VPFrms Upper error on VPFrms 117-121 F5.1 10+6Msun e_VPFrms Lower error on VPFrms 123-127 F5.1 10+6Msun VPsrms Virial product calculated based on sigrms (1) 129-133 F5.1 10+6Msun E_VPsrms Upper error on VPsrms 135-138 F4.1 10+6Msun e_VPsrms Lower error on VPsrms -------------------------------------------------------------------------------- Note (1): The virial product is defined as VP=RBLR(ΔV)2/G, where RBLR is the distance from black hole to the broad-line regions, ΔV is the velocity of BLRs clouds and G is the gravitational constant. ΔV is usually traced by the full width at half-maximum (FWHM) or the line dispersion (σ) of Hβ emission line measured from the mean or rms spectrum. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 13 A13 --- Name AGN name 15 A1 --- f_Name Flag on Name (1) 17- 18 A2 --- BType Bulge type (G1) 20- 23 F4.2 [Msun] logMBH1 Logarithm of the black hole mass derived from method 1 (2) 25- 28 F4.2 [Msun] e_logMBH1 Error on logMBH1 30- 33 F4.2 [Msun] logMBH2 ? Logarithm of the black hole mass derived from method 2 (3) 35- 38 F4.2 [Msun] e_logMBH2 ? Error on logMBH2 40- 44 F5.2 [-] logfFm1 ? Logarithm of the virial factor derived using the virial product VPF,mean and logMBH1 46- 49 F4.2 [-] E_logfFm1 ? Upper error on logfFm1 51- 54 F4.2 [-] e_logfFm1 ? Lower error on logfFm1 56- 60 F5.2 [-] logfFm2 ? Logarithm of the virial factor derived using the virial product VPF,mean and logMBH2 62- 65 F4.2 [-] E_logfFm2 ? Upper error on logfFm2 67- 70 F4.2 [-] e_logfFm2 ? Lower error on logfFm2 72- 75 F4.2 [-] logfsm1 ? Logarithm of the virial factor derived using the virial product VPσ,mean and logMBH1 77- 80 F4.2 [-] E_logfsm1 ? Upper error on logfsm1 82- 85 F4.2 [-] e_logfsm1 ? Lower error on logfsm1 87- 91 F5.2 [-] logfsm2 ? Logarithm of the virial factor derived using the virial product VPσ,mean and logMBH2 93- 96 F4.2 [-] E_logfsm2 ? Upper error on logfsm2 98-101 F4.2 [-] e_logfsm2 ? Lower error on logfsm2 103-107 F5.2 [-] logfFr1 ? Logarithm of the virial factor derived using the virial product VPF,rms and logMBH1 109-112 F4.2 [-] E_logfFr1 ? Upper error on logfFr1 114-117 F4.2 [-] e_logfFr1 ? Lower error on logfFr1 119-123 F5.2 [-] logfFr2 ? Logarithm of the virial factor derived using the virial product VPF,rms and logMBH2 125-128 F4.2 [-] E_logfFr2 ? Upper error on logfFr2 130-133 F4.2 [-] e_logfFr2 ? Lower error on logfFr2 135-138 F4.2 [-] logfsr1 ? Logarithm of the virial factor derived using the virial product VPσ,rms and logMBH1 140-143 F4.2 [-] E_logfsr1 ? Upper error on logfsr1 145-148 F4.2 [-] e_logfsr1 ? Lower error on logfsr1 150-154 F5.2 [-] logfsr2 ? Logarithm of the virial factor derived using the virial product VPσ,rms and logMBH2 156-159 F4.2 [-] E_logfsr2 ? Upper error on logfsr2 161-164 F4.2 [-] e_logfsr2 ? Lower error on logfsr2 -------------------------------------------------------------------------------- Note (1): Flag as follows: a = The mass of SMBH is measured by dynamic method (Davies et al. 2006ApJ...646..754D 2006ApJ...646..754D) b = The mass of SMBH is measured by dynamic method (Onken et al. 2014ApJ...791...37O 2014ApJ...791...37O; table 1) Note (2): MBH and f are derived from two kinds of MBH* relation log[MBH/109M☉]=α+βlog[σ*_/200km/s] For the first method we pick β=4.38 and α=-0.51. Note (3): MBH and f are derived from two kinds of MBH* relation log[MBH/109M☉]=α+βlog[σ*_/200km/s] For the second method we pick β=4.38 and α=-1.09. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 12 A12 --- Name AGN name 14- 19 F6.2 d tau Rest-frame Hβ time lag 21- 24 F4.2 d E_tau Upper error on tau 26- 30 F5.2 d e_tau Lower error on tau 32- 36 I5 km/s FWHMmean Broad line FWHMmean from the mean spectrum 38- 40 I3 km/s e_FWHMmean Error on FWHMmean 42- 45 F4.2 [Msun] logVPFm Logarithm of the virial product calculated based on FWHMmean 47- 50 F4.2 [Msun] E_logVPFm Upper error on logVPFm 52- 55 F4.2 [Msun] e_logVPFm Lower error on logVPFm 57- 60 F4.2 [Msun] logMBH Logarithm of the black hole mass 62- 65 F4.2 [Msun] E_logMBH Upper error on logMBH 67- 70 F4.2 [Msun] e_logMBH Lower error on logMBH 72- 76 F5.2 [-] logfFm Logarithm of the virial factor derived using logVPFm 78- 81 F4.2 [-] E_logfFm Upper error on logfFm 83- 86 F4.2 [-] e_logfFm Lower error on logfFm 88- 90 A3 --- r_logMBH Reference for logMBH (1) 92 I1 --- r_tau Reference for tau and FWHMmean (2) -------------------------------------------------------------------------------- Note (1): Flag as follows: P14 = Pancoast et al. (2014MNRAS.445.3073P 2014MNRAS.445.3073P) G17 = Grier et al. (2017ApJ...849..146G 2017ApJ...849..146G) P18 = Pancoast et al. (2018ApJ...856..108P 2018ApJ...856..108P) W18 = Williams et al. (2018ApJ...866...75W 2018ApJ...866...75W) L18 = Li et al. (2018ApJ...869..137L 2018ApJ...869..137L) X18 = Pan et al. (2018ApJ...866...69P 2018ApJ...866...69P) S18 = Sturm et al. (2018Natur.563..657G 2018Natur.563..657G) Note (2): Flag as follows: 1 = Table 1 in this paper 2 = Grier et al. (2012ApJ...755...60G 2012ApJ...755...60G, Cat. J/ApJ/755/60) 3 = Valenti et al. (2015ApJ...813L..36V 2015ApJ...813L..36V) 4 = Barth et al. (2015ApJS..217...26B 2015ApJS..217...26B, Cat. J/ApJS/217/26) 5 = Hu et al. (2015ApJ...804..138H 2015ApJ...804..138H) 6 = Wang et al. (2016ApJ...824..149W 2016ApJ...824..149W) 7 = Zhang et al. (2019ApJ...876...49Z 2019ApJ...876...49Z, Cat. J/ApJ/876/49) -------------------------------------------------------------------------------- Global Notes: Note (G1): Bulge type as follows: E = Elliptical bulge CB = Classical bulge PB = Pseudo-bulge -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Ana Fiallos [CDS] 01-Dec-2022
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line