J/MNRAS/488/1519 Calibration of the virial factor f in SMBHs (Yu+, 2019)
Calibration of the virial factor f in supermassive black hole masses of
reverberation-mapped AGNs.
Yu L.-M., Bian W.-H., Wang C., Zhao B.-X., Ge X.
<Mon. Not. R. Astron. Soc., 488, 1519-1534 (2019)>
=2019MNRAS.488.1519Y 2019MNRAS.488.1519Y (SIMBAD/NED BibCode)
ADC_Keywords: Active gal. nuclei ; QSOs ; Galaxies, Seyfert ;
Velocity dispersion ; Spectra, optical ; Balmer lines
Keywords: galaxies: active - galaxies: nuclei - quasars: emission lines -
quasars: general - galaxies: Seyfert
Abstract:
Using a compiled sample of 34 broad-line active galactic nuclei (AGNs)
with measured Hβ time lags from the reverberation mapping (RM)
method and measured bulge stellar velocity dispersions σ*, we
calculate the virial factor f by assuming that the RM AGNs
intrinsically obey the same MBH-σ* relation as quiescent
galaxies, where MBH is the mass of the supermassive black hole
(SMBH). Considering four tracers of the velocity of the broad-line
regions (BLRs), i.e. the Hβ line width or line dispersion from
the mean or rms spectrum, there are four kinds of the factor f. Using
the Hβ full width at half-maximum (FWHM) to trace the BLRs
velocity, we find significant correlations between the factor f and
some observational parameters, e.g. FWHM, the line dispersion. Using
the line dispersion to trace the BLRs velocity, these relations
disappear or become weaker. It implies the effect of inclination in
BLRs geometry. It also suggests that the variable f in MBH estimated
from luminosity and FWHM in a single-epoch spectrum is not negligible.
Using a simple model of thick-disc BLRs, we also find that, as the
tracer of the BLRs velocity, Hβ FWHM has some dependence on the
inclination, while the line dispersion σHβ is insensitive
to the inclination. Considering the calibrated FWHM-based factor f
from the mean spectrum, the scatter of the SMBH mass is 0.39dex for
our sample of 34 low-redshift RM AGNs. For a high-redshift sample of
30 Sloan Digital Sky Survey RM AGNs with measured stellar velocity
dispersions, we find that the SMBH mass scatter is larger than that
for our sample of 34 low-redshift RM AGNs. It implies the possibility
of evolution of the MBH-σ* relation from high-redshift to
low-redshift AGNs.
Description:
Up to now, there are about 120 AGNs with measured Hβ/Hα
lags from the RM method (e.g. Grier et al. 2017ApJ...851...21G 2017ApJ...851...21G, Cat.
J/ApJ/851/21; Du et al. 2018ApJ...856....6D 2018ApJ...856....6D, Cat. J/ApJ/856/6). Our
sample consists of 34 low redshift broad-line AGNs (z less than 0.1
except PG 1617+175) with both measured Hβ lags and reliable
σ*, which allows us to calibrate the factor f based on the
MBH-σ* relation. A total of 32 of these 34 RM AGNs are
selected from Ho & Kim (2014ApJ...789...17H 2014ApJ...789...17H), who had imaged these
objects and classified them into three bulge types: elliptical,
classical bulge (CB) and pseudo-bulge PB. For Fairall 9, the stellar
velocity dispersion is adopted from its near-infrared spectrum (Oliva
et al. 1995A&A...301...55O 1995A&A...301...55O). Beyond the sample of Ho & Kim
(2014ApJ...789...17H 2014ApJ...789...17H), there are two additional objects. The first one
is an early-type galaxy NGC 5273 from Bentz et al.
(2014ApJ...796....8B 2014ApJ...796....8B). The second one is MCG+06-26-012 with PB. Its RM
result is from Du et al. (2015ApJ...806...22D 2015ApJ...806...22D, Cat. J/ApJ/806/22) and
its stellar velocity dispersion is adopted from Woo et al.
(2015ApJ...801...38W 2015ApJ...801...38W). For our sample of these 34 RM AGNs, there are 8
classified as ellipticals, 9 classified as CBs, 17 classified as PBs.
Here we do not use a high-z sample of 48 AGNs (z∼0.1-1.0) from the
Sloan Digital Sky Survey (SDSS) RM Project (Grier et al.
2017ApJ...851...21G 2017ApJ...851...21G, Cat. J/ApJ/851/21) with measured Hβ/Hα
lags (44 Hβ lag, 18 Hα lags) to do the calibration of f.
There are 30 of 48 AGNs with measured σ* by Shen et al.
(2015ApJ...805...96S 2015ApJ...805...96S, Cat. J/ApJ/805/96). We use this high-z sample to
investigate the evolution of the MBH-σ* relation.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table1.dat 204 46 The low-z RM AGNs sample with measured
σ* for the calibration of f
table2.dat 138 40 The high-z RM AGNs observed by SDSS with
measured σ*
table3.dat 164 46 The MBH and four kinds factor of the low-z
RM AGNs sample in Table 1
table6.dat 92 21 The factor f derived from the BLRs dynamical
model, X-ray variability, resolved Pa α
emission region for 19 AGNs
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- Name AGN name
15- 22 A8 --- OName Other name
24- 27 F4.2 --- RFe ? Ratio of optical FeII and Hβ flux
from Du et al. (2016ApJ...818L..14D 2016ApJ...818L..14D,
Cat. J/ApJ/818/L14)
29- 31 I3 km/s sigma Stellar velocity dispersion
33- 34 I2 km/s e_sigma Error on sigma
36 A1 --- r_sigma Reference for sigma (1)
38- 41 A4 --- BType Bulge type (G1)
43- 47 F5.2 10-7W lambdaL Host-corrected monochromatic luminosity at
5100Å
49- 52 F4.2 10-7W e_lambdaL Error on lambdaL
54 A1 --- r_lambdaL Reference for lambdaL (1)
56- 60 F5.1 d tau Rest-frame Hβ time lag
62- 65 F4.1 d E_tau Upper error on tau
67 A1 --- r_tau Reference for tau (1)
69- 72 F4.1 d e_tau Lower error on tau
74- 78 I5 km/s FWHMmean ? Broad Hβ FWHMmean from the mean
spectrum
80- 82 I3 km/s e_FWHMmean ? Error on FWHMmean
84 A1 --- r_FWHMmean Reference for FWHMmean (1)
86- 90 I5 km/s FWHMrms ? Broad Hβ FWHMrms from the rms
spectrum
92- 95 I4 km/s e_FWHMrms ? Error on FWHMrms
97 A1 --- r_FWHMrms Reference for FWHMrms (1)
99-102 I4 km/s sigHb ? Broad Hβ line dispersion
σHβ,mean from the mean
spectrum
104-106 I3 km/s e_sigHb ? Error on sigHb
108 A1 --- r_sigHb Reference for sigHb (1)
110-113 I4 km/s sigHbrms ? Broad Hβ line dispersion
σHβ,rms from the rms spectrum
115-117 I3 km/s e_sigHbrms ? Error on sigHbrms
119 A1 --- r_sigHbrms Reference for sigHbrms (1)
121-126 F6.1 10+6Msun VPFm ? Virial product calculated based on
FWHMmean
128-132 F5.1 10+6Msun E_VPFm ? Upper error on VPFm
134-138 F5.1 10+6Msun e_VPFm ? Lower error on VPFm
140-144 F5.1 10+6Msun VPsm ? Virial product calculated based on sigHb
146-150 F5.2 10+6Msun E_VPsm ? Upper error on VPsm
152-156 F5.2 10+6Msun e_VPsm ? Lower error on VPsm
158-163 F6.1 10+6Msun VPFrms ? Virial product calculated based on FWHMrms
165-170 F6.2 10+6Msun E_VPFrms ? Upper error on VPFrms
172-177 F6.2 10+6Msun e_VPFrms ? Lower error on VPFrms
179-183 F5.1 10+6Msun VPsrms ? Virial product calculated based on
sigHbrms
185-190 F6.2 10+6Msun E_VPsrms ? Upper error on VPsrms
192-196 F5.2 10+6Msun e_VPsrms ? Lower error on VPsrms
198-204 A7 --- refs References (2)
--------------------------------------------------------------------------------
Note (1): References as follows:
a = Williams et al. (2018ApJ...866...75W 2018ApJ...866...75W; 4.2)
b = Barth et al. (2015ApJS..217...26B 2015ApJS..217...26B, Cat. J/ApJS/217/26; table 5)
c = Du et al. (2016ApJ...818L..14D 2016ApJ...818L..14D, Cat. J/ApJ/818/L14; table 1)
d = Du et al. (2015ApJ...806...22D 2015ApJ...806...22D, Cat. J/ApJ/806/22; tables 6 and 7)
e = Collin et al. (2006A&A...456...75C 2006A&A...456...75C; table 1)
f = Bentz et al. (2014ApJ...796....8B 2014ApJ...796....8B)
g = Woo et al. (2015ApJ...801...38W 2015ApJ...801...38W; table 1)
h = Wang et al. (2014ApJ...793..108W 2014ApJ...793..108W, Cat. J/ApJ/793/108)
i = Oliva et al. (1995A&A...301...55O 1995A&A...301...55O)
Note (2): References as follows:
1 = Ho & Kim (2014ApJ...789...17H 2014ApJ...789...17H)
2 = Du et al. (2016ApJ...818L..14D 2016ApJ...818L..14D, Cat. J/ApJ/818/L14)
3 = Williams et al. (2018ApJ...866...75W 2018ApJ...866...75W)
4 = Barth et al. (2015ApJS..217...26B 2015ApJS..217...26B, Cat. J/ApJS/217/26)
5 = Du et al. (2015ApJ...806...22D 2015ApJ...806...22D, Cat. J/ApJ/806/22)
6 = Collin et al. (2006A&A...456...75C 2006A&A...456...75C)
7 = Bentz et al. (2014ApJ...796....8B 2014ApJ...796....8B)
8 = Woo et al. (2015ApJ...801...38W 2015ApJ...801...38W)
9 = Wang et al. (2014ApJ...793..108W 2014ApJ...793..108W, Cat. J/ApJ/793/108)
10 = Oliva et al. (1995A&A...301...55O 1995A&A...301...55O)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 A6 --- Line Observed line
8- 13 A6 --- Name AGN name
15- 19 F5.3 --- z Redshift
21- 25 F5.1 km/s sigma Star velocity dispersion
27- 30 F4.1 km/s e_sigma Error on sigma
32- 36 I5 km/s FWHMmean Broad line FWHMmean from the mean spectrum
38- 40 I3 km/s e_FWHMmean Error on FWHMmean
42- 46 I5 km/s FWHMrms Broad line FWHMrms from the rms spectrum
48- 50 I3 km/s e_FWHMrms Error on FWHMrms
52- 55 I4 km/s sigmean Broad line dispersion from the mean spectrum
57- 58 I2 km/s e_sigmean Error on sigmean
60- 63 I4 km/s sigrms Broad line dispersion from the rms spectrum
65- 66 I2 km/s e_sigrms Error on sigrms
68- 73 F6.1 10+6Msun VPFm Virial product calculated based on
FWHMmean (1)
75- 79 F5.1 10+6Msun E_VPFm Upper error on VPFm
81- 85 F5.1 10+6Msun e_VPFm Lower error on VPFm
87- 91 F5.1 10+6Msun VPsm Virial product calculated based on
sigmean (1)
93- 97 F5.1 10+6Msun E_VPsm Upper error on VPsm
99-102 F4.1 10+6Msun e_VPsm Lower error on VPsm
104-109 F6.1 10+6Msun VPFrms Virial product calculated based on
FWHMrms (1)
111-115 F5.1 10+6Msun E_VPFrms Upper error on VPFrms
117-121 F5.1 10+6Msun e_VPFrms Lower error on VPFrms
123-127 F5.1 10+6Msun VPsrms Virial product calculated based on
sigrms (1)
129-133 F5.1 10+6Msun E_VPsrms Upper error on VPsrms
135-138 F4.1 10+6Msun e_VPsrms Lower error on VPsrms
--------------------------------------------------------------------------------
Note (1): The virial product is defined as VP=RBLR(ΔV)2/G, where
RBLR is the distance from black hole to the broad-line regions,
ΔV is the velocity of BLRs clouds and G is the gravitational
constant.
ΔV is usually traced by the full width at half-maximum (FWHM)
or the line dispersion (σHβ) of Hβ emission line
measured from the mean or rms spectrum.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- Name AGN name
15 A1 --- f_Name Flag on Name (1)
17- 18 A2 --- BType Bulge type (G1)
20- 23 F4.2 [Msun] logMBH1 Logarithm of the black hole mass derived from
method 1 (2)
25- 28 F4.2 [Msun] e_logMBH1 Error on logMBH1
30- 33 F4.2 [Msun] logMBH2 ? Logarithm of the black hole mass derived
from method 2 (3)
35- 38 F4.2 [Msun] e_logMBH2 ? Error on logMBH2
40- 44 F5.2 [-] logfFm1 ? Logarithm of the virial factor derived
using the virial product VPF,mean and
logMBH1
46- 49 F4.2 [-] E_logfFm1 ? Upper error on logfFm1
51- 54 F4.2 [-] e_logfFm1 ? Lower error on logfFm1
56- 60 F5.2 [-] logfFm2 ? Logarithm of the virial factor derived
using the virial product VPF,mean and
logMBH2
62- 65 F4.2 [-] E_logfFm2 ? Upper error on logfFm2
67- 70 F4.2 [-] e_logfFm2 ? Lower error on logfFm2
72- 75 F4.2 [-] logfsm1 ? Logarithm of the virial factor derived
using the virial product VPσ,mean
and logMBH1
77- 80 F4.2 [-] E_logfsm1 ? Upper error on logfsm1
82- 85 F4.2 [-] e_logfsm1 ? Lower error on logfsm1
87- 91 F5.2 [-] logfsm2 ? Logarithm of the virial factor derived
using the virial product VPσ,mean
and logMBH2
93- 96 F4.2 [-] E_logfsm2 ? Upper error on logfsm2
98-101 F4.2 [-] e_logfsm2 ? Lower error on logfsm2
103-107 F5.2 [-] logfFr1 ? Logarithm of the virial factor derived
using the virial product VPF,rms and
logMBH1
109-112 F4.2 [-] E_logfFr1 ? Upper error on logfFr1
114-117 F4.2 [-] e_logfFr1 ? Lower error on logfFr1
119-123 F5.2 [-] logfFr2 ? Logarithm of the virial factor derived
using the virial product VPF,rms and
logMBH2
125-128 F4.2 [-] E_logfFr2 ? Upper error on logfFr2
130-133 F4.2 [-] e_logfFr2 ? Lower error on logfFr2
135-138 F4.2 [-] logfsr1 ? Logarithm of the virial factor derived
using the virial product VPσ,rms and
logMBH1
140-143 F4.2 [-] E_logfsr1 ? Upper error on logfsr1
145-148 F4.2 [-] e_logfsr1 ? Lower error on logfsr1
150-154 F5.2 [-] logfsr2 ? Logarithm of the virial factor derived
using the virial product VPσ,rms and
logMBH2
156-159 F4.2 [-] E_logfsr2 ? Upper error on logfsr2
161-164 F4.2 [-] e_logfsr2 ? Lower error on logfsr2
--------------------------------------------------------------------------------
Note (1): Flag as follows:
a = The mass of SMBH is measured by dynamic method (Davies et al.
2006ApJ...646..754D 2006ApJ...646..754D)
b = The mass of SMBH is measured by dynamic method (Onken et al.
2014ApJ...791...37O 2014ApJ...791...37O; table 1)
Note (2): MBH and f are derived from two kinds of MBH-σ* relation
log[MBH/109M☉]=α+βlog[σ*_/200km/s]
For the first method we pick β=4.38 and α=-0.51.
Note (3): MBH and f are derived from two kinds of MBH-σ* relation
log[MBH/109M☉]=α+βlog[σ*_/200km/s]
For the second method we pick β=4.38 and α=-1.09.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 12 A12 --- Name AGN name
14- 19 F6.2 d tau Rest-frame Hβ time lag
21- 24 F4.2 d E_tau Upper error on tau
26- 30 F5.2 d e_tau Lower error on tau
32- 36 I5 km/s FWHMmean Broad line FWHMmean from the mean spectrum
38- 40 I3 km/s e_FWHMmean Error on FWHMmean
42- 45 F4.2 [Msun] logVPFm Logarithm of the virial product calculated
based on FWHMmean
47- 50 F4.2 [Msun] E_logVPFm Upper error on logVPFm
52- 55 F4.2 [Msun] e_logVPFm Lower error on logVPFm
57- 60 F4.2 [Msun] logMBH Logarithm of the black hole mass
62- 65 F4.2 [Msun] E_logMBH Upper error on logMBH
67- 70 F4.2 [Msun] e_logMBH Lower error on logMBH
72- 76 F5.2 [-] logfFm Logarithm of the virial factor derived using
logVPFm
78- 81 F4.2 [-] E_logfFm Upper error on logfFm
83- 86 F4.2 [-] e_logfFm Lower error on logfFm
88- 90 A3 --- r_logMBH Reference for logMBH (1)
92 I1 --- r_tau Reference for tau and FWHMmean (2)
--------------------------------------------------------------------------------
Note (1): Flag as follows:
P14 = Pancoast et al. (2014MNRAS.445.3073P 2014MNRAS.445.3073P)
G17 = Grier et al. (2017ApJ...849..146G 2017ApJ...849..146G)
P18 = Pancoast et al. (2018ApJ...856..108P 2018ApJ...856..108P)
W18 = Williams et al. (2018ApJ...866...75W 2018ApJ...866...75W)
L18 = Li et al. (2018ApJ...869..137L 2018ApJ...869..137L)
X18 = Pan et al. (2018ApJ...866...69P 2018ApJ...866...69P)
S18 = Sturm et al. (2018Natur.563..657G 2018Natur.563..657G)
Note (2): Flag as follows:
1 = Table 1 in this paper
2 = Grier et al. (2012ApJ...755...60G 2012ApJ...755...60G, Cat. J/ApJ/755/60)
3 = Valenti et al. (2015ApJ...813L..36V 2015ApJ...813L..36V)
4 = Barth et al. (2015ApJS..217...26B 2015ApJS..217...26B, Cat. J/ApJS/217/26)
5 = Hu et al. (2015ApJ...804..138H 2015ApJ...804..138H)
6 = Wang et al. (2016ApJ...824..149W 2016ApJ...824..149W)
7 = Zhang et al. (2019ApJ...876...49Z 2019ApJ...876...49Z, Cat. J/ApJ/876/49)
--------------------------------------------------------------------------------
Global Notes:
Note (G1): Bulge type as follows:
E = Elliptical bulge
CB = Classical bulge
PB = Pseudo-bulge
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Ana Fiallos [CDS] 01-Dec-2022