J/MNRAS/493/234 Herbig Ae/Be accretion rates & mechanisms (Wichittanakom+ 2020)
The accretion rates and mechanisms of Herbig Ae/Be stars.
Wichittanakom C., Oudmaijer R.D., Fairlamb J.R., Mendigutia I.,
Vioque M., Ababakr K.M.
<Mon. Not. R. Astron. Soc. 493, 234-249 (2020)>
=2020MNRAS.493..234W 2020MNRAS.493..234W (SIMBAD/NED BibCode)
ADC_Keywords: Stars, pre-main sequence ; Stars, Be ; Stars, emission ;
Equivalent widths
Keywords: accretion, accretion discs - techniques: spectroscopic -
stars: formation - stars: fundamental parameters -
stars: pre-main-sequence - stars: variables: T Tauri, Herbig Ae/Be
Abstract:
This work presents a spectroscopic study of 163 Herbig Ae/Be stars.
Amongst these, we present new data for 30 objects. Stellar parameters
such as temperature, reddening, mass, luminosity, and age are
homogeneously determined. Mass accretion rates are determined from
Hα emission line measurements. Our data is complemented with
the X-Shooter sample from previous studies and we update results using
Gaia DR2 parallaxes giving a total of 78 objects with homogeneously
determined stellar parameters and mass accretion rates. In addition,
mass accretion rates of an additional 85 HAeBes are determined. We
confirm previous findings that the mass accretion rate increases as a
function of stellar mass, and the existence of a different slope for
lower and higher mass stars, respectively. The mass where the slope
changes is determined to be 3.98^+1.37-0.94M☉_. We discuss this
break in the context of different modes of disc accretion for low- and
high-mass stars. Because of their similarities with T Tauri stars, we
identify the accretion mechanism for the late-type Herbig stars with
the Magnetospheric Accretion. The possibilities for the earlier-type
stars are still open, we suggest the Boundary Layer accretion model
may be a viable alternative. Finally, we investigated the mass
accretion-age relationship. Even using the superior Gaia based data,
it proved hard to select a large enough sub-sample to remove the mass
dependence in this relationship. Yet, it would appear that the mass
accretion does decline with age as expected from basic theoretical
considerations.
Description:
The tables contain the astrophysical data of more than 200 Herbig
Ae/Be stars as listed in Vioque et al. (2018A&A...620A.128V 2018A&A...620A.128V, Cat.
J/A+A/620/A128), and for which accretion rates have been determined.
The sample has been split into two parts.
Tables 2 and 3 are combined in on-line table "Main". It presents data
for 30 Northern Herbig Ae/Be star candidates observed in this paper.
The table contains the astrophysical parameters and accretion rates
that have been determined using spectra obtained by the authors. The
reddening has been self-consistently determined and the resulting
luminosities are derived from the Gaia DR2 parallaxes as per Vioque et
al. (2018A&A...620A.128V 2018A&A...620A.128V). The accretion rates have been determined
from the Halpha line emission Equivalent Widths form the spectra and
the dereddened photometry, using the calibration provided in Fairlamb
et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F).
Tables C1 and C2 are combined in on-line table C. It presents data for
91 Herbig Ae/Be star candidates, and contain the astrophysical
parameters and accretion rates that have been determined using spectra
obtained by Fairlamb et al. (2015MNRAS.453..976F 2015MNRAS.453..976F). The reddening has
been self-consistently re-determined and the resulting luminosities
are derived from the Gaia DR2 parallaxes as per Vioque et al.
(2018A&A...620A.128V 2018A&A...620A.128V). The accretion rates have been determined from
the Halpha line emission Equivalent Widths form the spectra and the
dereddened photometry, using the calibration provided in Fairlamb et
al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F).
Table D contains accretion related results for the remaining 144
Herbig Ae/Be stars. Their astrophysical parameters are taken from (and
listed in) Vioque et al. (2018A&A...620A.128V 2018A&A...620A.128V). For these objects the
accretion rates are determined using published photometry, extinctions
and Halpha Equivalent Widths as presented by Vioque et al.
(2018A&A...620A.128V 2018A&A...620A.128V).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
main.dat 283 30 Astrophysical parameters and accretion properties
of Northern Herbig Ae/Be stars
(Tables 2 and 3)
tablec.dat 286 91 Astrophysical parameters and accretion properties
of Herbig Ae/Be stars in Fairlamb et al.
(2015MNRAS.453..976F 2015MNRAS.453..976F, Cat. J/MNRAS/453/976)
(Tables C1 and C2)
tabled.dat 155 144 Accretion properties of Herbig Ae/Be stars in
Vioque et al. (2018, Cat. J/A+A/620/A128)
--------------------------------------------------------------------------------
See also:
J/MNRAS/453/976 : Herbig Ae/Be X-shooter observations (Fairlamb+, 2015)
J/A+A/620/A128 : Gaia DR2 study of Herbig Ae/Be stars (Vioque+, 2018)
Byte-by-byte Description of file: main.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 A9 --- Name Object name
11- 12 I2 h RAh Right ascension (J2000)
14- 15 I2 min RAm Right ascension (J2000)
17- 20 F4.1 s RAs Right ascension (J2000)
22 A1 --- DE- Declination sign (J2000)
23- 24 I2 deg DEd Declination (J2000)
26- 27 I2 arcmin DEm Declination (J2000)
29- 32 F4.1 arcsec DEs Declination (J2000)
34- 38 I5 K Teff Effective temperature
40- 43 I4 K E_Teff Upper error of effective temperature
45- 48 I4 K e_Teff Lower error of effective temperature
50- 53 F4.2 [cm/s2] logg Decimal logarithm of the surface gravity
55- 58 F4.2 [cm/s2] E_logg Upper error of decimal logarithm of the
surface gravity
60- 63 F4.2 [cm/s2] e_logg Lower error of decimal logarithm of the
surface gravity
65- 68 F4.2 mag AV Visual extinction
70- 73 F4.2 mag E_AV Upper error of visual extinction
75- 78 F4.2 mag e_AV Lower error of visual extinction
80- 86 F7.2 pc Dist ? Distance is obtained from
Vioque et al. (2018, Cat. J/A+A/620/A128)
88- 93 F6.2 pc E_Dist ? Upper error of distance from
Vioque et al. (2018, Cat. J/A+A/620/A128)
95-100 F6.2 pc e_Dist ? Lower error of distance from
Vioque et al. (2018, Cat. J/A+A/620/A128)
102-106 F5.2 Rsun Rad ? Radius
108-111 F4.2 Rsun E_Rad ? Upper error of radius
113-116 F4.2 Rsun e_Rad ? Lower error of radius
118-121 F4.2 [Lsun] logL ? Decimal logarithm of the luminosity
123-126 F4.2 [Lsun] E_logL ? Upper error of decimal logarithm of the
luminosity
128-131 F4.2 [Lsun] e_logL ? Lower error of decimal logarithm of the
luminosity
133-137 F5.2 Msun Mass ? Mass
139-143 F5.2 Msun E_Mass ? Upper error of mass
145-149 F5.2 Msun e_Mass ? Lower error of mass
151-155 F5.2 Myr Age ? Age
157-161 F5.2 Myr E_Age ? Upper error of age
163-166 F4.2 Myr e_Age ? Lower error of age
168-172 A5 --- Haprof Halpha_profile (1)
174-180 F7.2 0.1nm EWobs Observed equivalent width
182-185 F4.2 0.1nm e_EWobs Uncertainty of observed equivalent width
187-191 F5.2 0.1nm EWint Intrinsic equivalent width
193-196 F4.2 0.1nm e_EWint Uncertainty of intrinsic equivalent width
198-204 F7.2 0.1nm EWcor Corrected equivalent width
206-209 F4.2 0.1nm e_EWcor Uncertainty of corrected equivalent width
211-218 E8.3 10W/m2/nm Flambda Continuum flux density at central
wavelength of the Halpha profile
(in W/m2/Å)
220-227 E8.3 10W/m2 Fline Line flux
229-235 E7.3 10W/m2 e_Fline Uncertainty of line flux
237-241 F5.2 [Lsun] logLline ? Decimal logarithm of the line luminosity
243-246 F4.2 [Lsun] E_logLline ? Upper error of decimal logarithm of the
line luminosity
248-251 F4.2 [Lsun] e_logLline ? Lower error of decimal logarithm of the
line luminosity
253-257 F5.2 [Lsun] logLacc ? Decimal logarithm of the accretion
luminosity
259-262 F4.2 [Lsun] E_logLacc ? Upper error of decimal logarithm of the
accretion luminosity
264-267 F4.2 [Lsun] e_logLacc ? Lower error of decimal logarithm of the
accretion luminosity
269-273 F5.2 [Msun/yr] logdM/dt ? Decimal logarithm of the mass accretion
rate
275-278 F4.2 [Msun/yr] E_logdM/dt ? Upper error of decimal logarithm of the
mass accretion rate
280-283 F4.2 [Msun/yr] e_logdM/dt ? Lower error of decimal logarithm of the
mass accretion rate
--------------------------------------------------------------------------------
Note (1): The Halpha emission line profile classification scheme according to
Reipurth et al. (1996A&AS..120..229R 1996A&AS..120..229R) as follows:
I = single-peaked
II_B = double-peaked and the secondary peak rises above half strength of
the primary peak, secondary peak is located blueward
II_R = double-peaked and the secondary peak rises above half strength of
the primary peak, secondary peak is located redward
III_B = double-peaked and the secondary peak rises below half strength of
the primary peak, secondary peak is located blueward
III_R = double-peaked and the secondary peak rises below half strength of
the primary peak, secondary peak is located redward
IV_B = regular P-Cygni profile
IV_R = inverse P-Cygni profile
The classifications are based on the emission lines in Figure B1 corrected
for absorption.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablec.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 15 A15 --- Name Object name
17- 18 I2 h RAh Right ascension (J2000)
20- 21 I2 min RAm Right ascension (J2000)
23- 26 F4.1 s RAs Right ascension (J2000)
28 A1 --- DE- Declination sign (J2000)
29- 30 I2 deg DEd Declination (J2000)
32- 33 I2 arcmin DEm Declination (J2000)
35- 38 F4.1 arcsec DEs Declination (J2000)
40- 44 I5 K Teff Effective temperature from Fairlamb et al.
(2015, J/MNRAS/453/976)
46- 49 I4 K E_Teff Upper error of effective temperature from
Fairlamb et al. (2015, J/MNRAS/453/976)
51- 54 I4 K e_Teff Lower error of effective temperature from
Fairlamb et al. (2015, J/MNRAS/453/976)
56- 59 F4.2 [cm/s2] logg Decimal logarithm of the surface gravity
from Fairlamb et al.
(2015, J/MNRAS/453/976)
61- 64 F4.2 [cm/s2] E_logg Upper error of decimal logarithm of the
surface gravity from Fairlamb et al.
(2015, J/MNRAS/453/976)
66- 69 F4.2 [cm/s2] e_logg Lower error of decimal logarithm of the
surface gravity from Fairlamb et al.
(2015, J/MNRAS/453/976)
71- 74 F4.2 mag AV Visual extinction
76- 79 F4.2 mag E_AV Upper error of visual extinction
81- 84 F4.2 mag e_AV Lower error of visual extinction
86- 92 F7.2 pc Dist ? Distance is obtained from
Vioque et al. (2018, J/A+A/620/A128)
94- 99 F6.2 pc E_Dist ? Upper error of distance from
Vioque et al. (2018, J/A+A/620/A128)
101-106 F6.2 pc e_Dist ? Lower error of distance from
Vioque et al. (2018, J/A+A/620/A128)
108-112 F5.2 Rsun Rad ? Radius
114-118 F5.2 Rsun E_Rad ? Upper error of radius
120-123 F4.2 Rsun e_Rad ? Lower error of radius
125-128 F4.2 [Lsun] logL ? Decimal logarithm of the luminosity
130-133 F4.2 [Lsun] E_logL ? Upper error of decimal logarithm of
the luminosity
135-138 F4.2 [Lsun] e_logL ? Lower error of decimal logarithm of
the luminosity
140-144 F5.2 Msun Mass ? Mass
146-150 F5.2 Msun E_Mass ? Upper error of mass
152-156 F5.2 Msun e_Mass ? Lower error of mass
158-162 F5.2 Myr Age ? Age
164-168 F5.2 Myr E_Age ? Upper error of age
170-174 F5.2 Myr e_Age ? Lower error of age
176-182 F7.2 0.1nm EWobs Observed equivalent width from
Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F)
184-187 F4.2 0.1nm e_EWobs Uncertainty of observed equivalent width
from Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F)
189-193 F5.2 0.1nm EWint Intrinsic equivalent width from
Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F)
195-198 F4.2 0.1nm e_EWint Uncertainty of intrinsic equivalent width
from Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F)
200-206 F7.2 0.1nm EWcor Corrected equivalent width from
Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F)
208-211 F4.2 0.1nm e_EWcor Uncertainty of corrected equivalent width
from Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F)
213-220 E8.3 10W/m2/nm Flambda Continuum flux density at central
wavelength of the Halpha profile
(in W/m2/Å) from
Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F)
222-229 E8.3 10W/m2 Fline ? Line flux
231-238 E8.3 10W/m2 e_Fline ? Uncertainty of line flux
240-244 F5.2 [Lsun] logLline ? Decimal logarithm of the line luminosity
246-249 F4.2 [Lsun] E_logLline ? Upper error of decimal logarithm of the
line luminosity
251-254 F4.2 [Lsun] e_logLline ? Lower error of decimal logarithm of the
line luminosity
256-260 F5.2 [Lsun] logLacc ? Decimal logarithm of the accretion
luminosity
262-265 F4.2 [Lsun] E_logLacc ? Upper error of decimal logarithm of the
accretion luminosity
267-270 F4.2 [Lsun] e_logLacc ? Lower error of decimal logarithm of the
accretion luminosity
272-276 F5.2 [Msun/yr] logdM/dt ? Decimal logarithm of the mass accretion
rate
278-281 F4.2 [Msun/yr] E_logdM/dt ? Upper error of decimal logarithm of the
mass accretion rate
283-286 F4.2 [Msun/yr] e_logdM/dt ? Lower error of decimal logarithm of the
mass accretion rate
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tabled.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 13 A13 --- Name Object name
15- 16 I2 h RAh Right ascension (J2000)
18- 19 I2 min RAm Right ascension (J2000)
21- 24 F4.1 s RAs Right ascension (J2000)
26 A1 --- DE- Declination sign (J2000)
27- 28 I2 deg DEd Declination (J2000)
30- 31 I2 arcmin DEm Declination (J2000)
33- 36 F4.1 arcsec DEs Declination (J2000)
38- 45 F8.2 0.1nm EWobs ? Observed equivalent width
47- 51 F5.2 0.1nm e_EWobs ? Uncertainty of observed equivalent width
53- 54 I2 --- r_EWobs ? References for observed equivalent
width (1)
56- 60 F5.2 0.1nm EWint Intrinsic equivalent width
62- 65 F4.2 0.1nm e_EWint Uncertainty of intrinsic equivalent width
67- 74 F8.2 0.1nm EWcor ? Corrected equivalent width
76- 80 F5.2 0.1nm e_EWcor ? Uncertainty of corrected equivalent width
82- 89 E8.3 10W/m2/nm Flambda Continuum flux density at central wavelength
of the Halpha profile (in W/m2/Å)
91- 98 E8.3 W/m2 Fline ? Line flux
100-107 E8.3 W/m2 e_Fline ? Uncertainty of line flux
109-113 F5.2 [Lsun] logLline ? Decimal logarithm of the line luminosity
115-118 F4.2 [Lsun] E_logLline ? Upper error of decimal logarithm of the
line luminosity
120-123 F4.2 [Lsun] e_logLline ? Lower error of decimal logarithm of the
line luminosity
125-129 F5.2 [Lsun] logLacc ? Decimal logarithm of the accretion
luminosity
131-134 F4.2 [Lsun] E_logLacc ? Upper error of decimal logarithm of the
accretion luminosity
136-139 F4.2 [Lsun] e_logLacc ? Lower error of decimal logarithm of the
accretion luminosity
141-145 F5.2 [Msun/yr] logdM/dt ? Decimal logarithm of the mass accretion
rate
147-150 F4.2 [Msun/yr] E_logdM/dt ? Upper error of decimal logarithm of the
mass accretion rate
152-155 F4.2 [Msun/yr] e_logdM/dt ? Upper error of decimal logarithm of the
mass accretion rate
--------------------------------------------------------------------------------
Note (1): References as follows:
1 = Herbig & Bell (1988LicOB1111....1H 1988LicOB1111....1H, Cat. V/73)
2 = Hernandez et al. (2004AJ....127....1G 2004AJ....127....1G)
3 = Mendigutia et al. (2004AJ....127....1G 2004AJ....127....1G, 2011A&A...535A..99M 2011A&A...535A..99M)
4 = Pogodin et al. (2012AN....333..594P 2012AN....333..594P)
5 = ESO Programme 082.A-9011(A)
6 = ESO Programme 076.B-0055(A)
7 = Sartori et al. (2010AJ....139...27S 2010AJ....139...27S)
8 = Baines et al. (2006MNRAS.367..737B 2006MNRAS.367..737B)
9 = Miroshnichenko et al. (1999A&A...347..137M 1999A&A...347..137M)
10 = Boehm & Catala (1995A&A...301..155B 1995A&A...301..155B)
11 = Wheelwright et al. (2010MNRAS.401.1199W 2010MNRAS.401.1199W)
12 = Vieira et al. (2011A&A...526A..24V 2011A&A...526A..24V)
13 = Hernandez et al. (2005AJ....129..856H 2005AJ....129..856H)
14 = Oudmaijer & Drew (1999MNRAS.305..166O 1999MNRAS.305..166O)
15 = ESO Programme 085.A-9027(B)
16 = ESO Programme 082.D-0061(A)
17 = ESO Programme 084.A-9016(A)
18 = ESO Programme 083.A-9013(A)
19 = Carmona et al. (2010A&A...517A..67C 2010A&A...517A..67C)
20 = Spezzi et al. (2008ApJ...680.1295S 2008ApJ...680.1295S)
21 = Dunkin et al. (1997MNRAS.286..604D 1997MNRAS.286..604D, 1997MNRAS.290..165D 1997MNRAS.290..165D)
22 = ESO Programme 075.D-0177(A)
23 = ESO Programme 60.A-9022(C)
24 = Borges Fernandes et al. (2007MNRAS.377.1343B 2007MNRAS.377.1343B)
25 = ESO Programme 073.D-0609(A)
26 = Ababakr et al. (2017MNRAS.472..854A 2017MNRAS.472..854A)
27 = Manoj et al. (2006ApJ...653..657M 2006ApJ...653..657M)
28 = Frasca et al. (2016A&A...594A..39F 2016A&A...594A..39F)
29 = Polster et al. (2012A&A...542A..57P 2012A&A...542A..57P)
30 = Kucerova et al. (2013A&A...554A.143K 2013A&A...554A.143K)
31 = Acke et al. (2005A&A...436..209A 2005A&A...436..209A)
32 = Nakano et al. (2012AJ....143...61N 2012AJ....143...61N, Cat. J/AJ/143/61)
33 = Miroshnichenko et al. (2002A&A...388..563M 2002A&A...388..563M)
34 = Miroshnichenko et al. (2000A&AS..147....5M 2000A&AS..147....5M, Cat. J/A+AS/147/5)
35 = Zuckerman et al. (2008ApJ...683.1085Z 2008ApJ...683.1085Z)
--------------------------------------------------------------------------------
Acknowledgements:
Miguel Vioque, pymvdl(at)leeds.ac.uk
(End) Patricia Vannier [CDS] 09-Nov-2020