J/MNRAS/493/234  Herbig Ae/Be accretion rates & mechanisms (Wichittanakom+ 2020)

The accretion rates and mechanisms of Herbig Ae/Be stars. Wichittanakom C., Oudmaijer R.D., Fairlamb J.R., Mendigutia I., Vioque M., Ababakr K.M. <Mon. Not. R. Astron. Soc. 493, 234-249 (2020)> =2020MNRAS.493..234W 2020MNRAS.493..234W (SIMBAD/NED BibCode)
ADC_Keywords: Stars, pre-main sequence ; Stars, Be ; Stars, emission ; Equivalent widths Keywords: accretion, accretion discs - techniques: spectroscopic - stars: formation - stars: fundamental parameters - stars: pre-main-sequence - stars: variables: T Tauri, Herbig Ae/Be Abstract: This work presents a spectroscopic study of 163 Herbig Ae/Be stars. Amongst these, we present new data for 30 objects. Stellar parameters such as temperature, reddening, mass, luminosity, and age are homogeneously determined. Mass accretion rates are determined from Hα emission line measurements. Our data is complemented with the X-Shooter sample from previous studies and we update results using Gaia DR2 parallaxes giving a total of 78 objects with homogeneously determined stellar parameters and mass accretion rates. In addition, mass accretion rates of an additional 85 HAeBes are determined. We confirm previous findings that the mass accretion rate increases as a function of stellar mass, and the existence of a different slope for lower and higher mass stars, respectively. The mass where the slope changes is determined to be 3.98^+1.37-0.94M☉_. We discuss this break in the context of different modes of disc accretion for low- and high-mass stars. Because of their similarities with T Tauri stars, we identify the accretion mechanism for the late-type Herbig stars with the Magnetospheric Accretion. The possibilities for the earlier-type stars are still open, we suggest the Boundary Layer accretion model may be a viable alternative. Finally, we investigated the mass accretion-age relationship. Even using the superior Gaia based data, it proved hard to select a large enough sub-sample to remove the mass dependence in this relationship. Yet, it would appear that the mass accretion does decline with age as expected from basic theoretical considerations. Description: The tables contain the astrophysical data of more than 200 Herbig Ae/Be stars as listed in Vioque et al. (2018A&A...620A.128V 2018A&A...620A.128V, Cat. J/A+A/620/A128), and for which accretion rates have been determined. The sample has been split into two parts. Tables 2 and 3 are combined in on-line table "Main". It presents data for 30 Northern Herbig Ae/Be star candidates observed in this paper. The table contains the astrophysical parameters and accretion rates that have been determined using spectra obtained by the authors. The reddening has been self-consistently determined and the resulting luminosities are derived from the Gaia DR2 parallaxes as per Vioque et al. (2018A&A...620A.128V 2018A&A...620A.128V). The accretion rates have been determined from the Halpha line emission Equivalent Widths form the spectra and the dereddened photometry, using the calibration provided in Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F). Tables C1 and C2 are combined in on-line table C. It presents data for 91 Herbig Ae/Be star candidates, and contain the astrophysical parameters and accretion rates that have been determined using spectra obtained by Fairlamb et al. (2015MNRAS.453..976F 2015MNRAS.453..976F). The reddening has been self-consistently re-determined and the resulting luminosities are derived from the Gaia DR2 parallaxes as per Vioque et al. (2018A&A...620A.128V 2018A&A...620A.128V). The accretion rates have been determined from the Halpha line emission Equivalent Widths form the spectra and the dereddened photometry, using the calibration provided in Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F). Table D contains accretion related results for the remaining 144 Herbig Ae/Be stars. Their astrophysical parameters are taken from (and listed in) Vioque et al. (2018A&A...620A.128V 2018A&A...620A.128V). For these objects the accretion rates are determined using published photometry, extinctions and Halpha Equivalent Widths as presented by Vioque et al. (2018A&A...620A.128V 2018A&A...620A.128V). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file main.dat 283 30 Astrophysical parameters and accretion properties of Northern Herbig Ae/Be stars (Tables 2 and 3) tablec.dat 286 91 Astrophysical parameters and accretion properties of Herbig Ae/Be stars in Fairlamb et al. (2015MNRAS.453..976F 2015MNRAS.453..976F, Cat. J/MNRAS/453/976) (Tables C1 and C2) tabled.dat 155 144 Accretion properties of Herbig Ae/Be stars in Vioque et al. (2018, Cat. J/A+A/620/A128) -------------------------------------------------------------------------------- See also: J/MNRAS/453/976 : Herbig Ae/Be X-shooter observations (Fairlamb+, 2015) J/A+A/620/A128 : Gaia DR2 study of Herbig Ae/Be stars (Vioque+, 2018) Byte-by-byte Description of file: main.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- Name Object name 11- 12 I2 h RAh Right ascension (J2000) 14- 15 I2 min RAm Right ascension (J2000) 17- 20 F4.1 s RAs Right ascension (J2000) 22 A1 --- DE- Declination sign (J2000) 23- 24 I2 deg DEd Declination (J2000) 26- 27 I2 arcmin DEm Declination (J2000) 29- 32 F4.1 arcsec DEs Declination (J2000) 34- 38 I5 K Teff Effective temperature 40- 43 I4 K E_Teff Upper error of effective temperature 45- 48 I4 K e_Teff Lower error of effective temperature 50- 53 F4.2 [cm/s2] logg Decimal logarithm of the surface gravity 55- 58 F4.2 [cm/s2] E_logg Upper error of decimal logarithm of the surface gravity 60- 63 F4.2 [cm/s2] e_logg Lower error of decimal logarithm of the surface gravity 65- 68 F4.2 mag AV Visual extinction 70- 73 F4.2 mag E_AV Upper error of visual extinction 75- 78 F4.2 mag e_AV Lower error of visual extinction 80- 86 F7.2 pc Dist ? Distance is obtained from Vioque et al. (2018, Cat. J/A+A/620/A128) 88- 93 F6.2 pc E_Dist ? Upper error of distance from Vioque et al. (2018, Cat. J/A+A/620/A128) 95-100 F6.2 pc e_Dist ? Lower error of distance from Vioque et al. (2018, Cat. J/A+A/620/A128) 102-106 F5.2 Rsun Rad ? Radius 108-111 F4.2 Rsun E_Rad ? Upper error of radius 113-116 F4.2 Rsun e_Rad ? Lower error of radius 118-121 F4.2 [Lsun] logL ? Decimal logarithm of the luminosity 123-126 F4.2 [Lsun] E_logL ? Upper error of decimal logarithm of the luminosity 128-131 F4.2 [Lsun] e_logL ? Lower error of decimal logarithm of the luminosity 133-137 F5.2 Msun Mass ? Mass 139-143 F5.2 Msun E_Mass ? Upper error of mass 145-149 F5.2 Msun e_Mass ? Lower error of mass 151-155 F5.2 Myr Age ? Age 157-161 F5.2 Myr E_Age ? Upper error of age 163-166 F4.2 Myr e_Age ? Lower error of age 168-172 A5 --- Haprof Halpha_profile (1) 174-180 F7.2 0.1nm EWobs Observed equivalent width 182-185 F4.2 0.1nm e_EWobs Uncertainty of observed equivalent width 187-191 F5.2 0.1nm EWint Intrinsic equivalent width 193-196 F4.2 0.1nm e_EWint Uncertainty of intrinsic equivalent width 198-204 F7.2 0.1nm EWcor Corrected equivalent width 206-209 F4.2 0.1nm e_EWcor Uncertainty of corrected equivalent width 211-218 E8.3 10W/m2/nm Flambda Continuum flux density at central wavelength of the Halpha profile (in W/m2/Å) 220-227 E8.3 10W/m2 Fline Line flux 229-235 E7.3 10W/m2 e_Fline Uncertainty of line flux 237-241 F5.2 [Lsun] logLline ? Decimal logarithm of the line luminosity 243-246 F4.2 [Lsun] E_logLline ? Upper error of decimal logarithm of the line luminosity 248-251 F4.2 [Lsun] e_logLline ? Lower error of decimal logarithm of the line luminosity 253-257 F5.2 [Lsun] logLacc ? Decimal logarithm of the accretion luminosity 259-262 F4.2 [Lsun] E_logLacc ? Upper error of decimal logarithm of the accretion luminosity 264-267 F4.2 [Lsun] e_logLacc ? Lower error of decimal logarithm of the accretion luminosity 269-273 F5.2 [Msun/yr] logdM/dt ? Decimal logarithm of the mass accretion rate 275-278 F4.2 [Msun/yr] E_logdM/dt ? Upper error of decimal logarithm of the mass accretion rate 280-283 F4.2 [Msun/yr] e_logdM/dt ? Lower error of decimal logarithm of the mass accretion rate -------------------------------------------------------------------------------- Note (1): The Halpha emission line profile classification scheme according to Reipurth et al. (1996A&AS..120..229R 1996A&AS..120..229R) as follows: I = single-peaked II_B = double-peaked and the secondary peak rises above half strength of the primary peak, secondary peak is located blueward II_R = double-peaked and the secondary peak rises above half strength of the primary peak, secondary peak is located redward III_B = double-peaked and the secondary peak rises below half strength of the primary peak, secondary peak is located blueward III_R = double-peaked and the secondary peak rises below half strength of the primary peak, secondary peak is located redward IV_B = regular P-Cygni profile IV_R = inverse P-Cygni profile The classifications are based on the emission lines in Figure B1 corrected for absorption. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 15 A15 --- Name Object name 17- 18 I2 h RAh Right ascension (J2000) 20- 21 I2 min RAm Right ascension (J2000) 23- 26 F4.1 s RAs Right ascension (J2000) 28 A1 --- DE- Declination sign (J2000) 29- 30 I2 deg DEd Declination (J2000) 32- 33 I2 arcmin DEm Declination (J2000) 35- 38 F4.1 arcsec DEs Declination (J2000) 40- 44 I5 K Teff Effective temperature from Fairlamb et al. (2015, J/MNRAS/453/976) 46- 49 I4 K E_Teff Upper error of effective temperature from Fairlamb et al. (2015, J/MNRAS/453/976) 51- 54 I4 K e_Teff Lower error of effective temperature from Fairlamb et al. (2015, J/MNRAS/453/976) 56- 59 F4.2 [cm/s2] logg Decimal logarithm of the surface gravity from Fairlamb et al. (2015, J/MNRAS/453/976) 61- 64 F4.2 [cm/s2] E_logg Upper error of decimal logarithm of the surface gravity from Fairlamb et al. (2015, J/MNRAS/453/976) 66- 69 F4.2 [cm/s2] e_logg Lower error of decimal logarithm of the surface gravity from Fairlamb et al. (2015, J/MNRAS/453/976) 71- 74 F4.2 mag AV Visual extinction 76- 79 F4.2 mag E_AV Upper error of visual extinction 81- 84 F4.2 mag e_AV Lower error of visual extinction 86- 92 F7.2 pc Dist ? Distance is obtained from Vioque et al. (2018, J/A+A/620/A128) 94- 99 F6.2 pc E_Dist ? Upper error of distance from Vioque et al. (2018, J/A+A/620/A128) 101-106 F6.2 pc e_Dist ? Lower error of distance from Vioque et al. (2018, J/A+A/620/A128) 108-112 F5.2 Rsun Rad ? Radius 114-118 F5.2 Rsun E_Rad ? Upper error of radius 120-123 F4.2 Rsun e_Rad ? Lower error of radius 125-128 F4.2 [Lsun] logL ? Decimal logarithm of the luminosity 130-133 F4.2 [Lsun] E_logL ? Upper error of decimal logarithm of the luminosity 135-138 F4.2 [Lsun] e_logL ? Lower error of decimal logarithm of the luminosity 140-144 F5.2 Msun Mass ? Mass 146-150 F5.2 Msun E_Mass ? Upper error of mass 152-156 F5.2 Msun e_Mass ? Lower error of mass 158-162 F5.2 Myr Age ? Age 164-168 F5.2 Myr E_Age ? Upper error of age 170-174 F5.2 Myr e_Age ? Lower error of age 176-182 F7.2 0.1nm EWobs Observed equivalent width from Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F) 184-187 F4.2 0.1nm e_EWobs Uncertainty of observed equivalent width from Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F) 189-193 F5.2 0.1nm EWint Intrinsic equivalent width from Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F) 195-198 F4.2 0.1nm e_EWint Uncertainty of intrinsic equivalent width from Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F) 200-206 F7.2 0.1nm EWcor Corrected equivalent width from Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F) 208-211 F4.2 0.1nm e_EWcor Uncertainty of corrected equivalent width from Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F) 213-220 E8.3 10W/m2/nm Flambda Continuum flux density at central wavelength of the Halpha profile (in W/m2/Å) from Fairlamb et al. (2017MNRAS.464.4721F 2017MNRAS.464.4721F) 222-229 E8.3 10W/m2 Fline ? Line flux 231-238 E8.3 10W/m2 e_Fline ? Uncertainty of line flux 240-244 F5.2 [Lsun] logLline ? Decimal logarithm of the line luminosity 246-249 F4.2 [Lsun] E_logLline ? Upper error of decimal logarithm of the line luminosity 251-254 F4.2 [Lsun] e_logLline ? Lower error of decimal logarithm of the line luminosity 256-260 F5.2 [Lsun] logLacc ? Decimal logarithm of the accretion luminosity 262-265 F4.2 [Lsun] E_logLacc ? Upper error of decimal logarithm of the accretion luminosity 267-270 F4.2 [Lsun] e_logLacc ? Lower error of decimal logarithm of the accretion luminosity 272-276 F5.2 [Msun/yr] logdM/dt ? Decimal logarithm of the mass accretion rate 278-281 F4.2 [Msun/yr] E_logdM/dt ? Upper error of decimal logarithm of the mass accretion rate 283-286 F4.2 [Msun/yr] e_logdM/dt ? Lower error of decimal logarithm of the mass accretion rate -------------------------------------------------------------------------------- Byte-by-byte Description of file: tabled.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 13 A13 --- Name Object name 15- 16 I2 h RAh Right ascension (J2000) 18- 19 I2 min RAm Right ascension (J2000) 21- 24 F4.1 s RAs Right ascension (J2000) 26 A1 --- DE- Declination sign (J2000) 27- 28 I2 deg DEd Declination (J2000) 30- 31 I2 arcmin DEm Declination (J2000) 33- 36 F4.1 arcsec DEs Declination (J2000) 38- 45 F8.2 0.1nm EWobs ? Observed equivalent width 47- 51 F5.2 0.1nm e_EWobs ? Uncertainty of observed equivalent width 53- 54 I2 --- r_EWobs ? References for observed equivalent width (1) 56- 60 F5.2 0.1nm EWint Intrinsic equivalent width 62- 65 F4.2 0.1nm e_EWint Uncertainty of intrinsic equivalent width 67- 74 F8.2 0.1nm EWcor ? Corrected equivalent width 76- 80 F5.2 0.1nm e_EWcor ? Uncertainty of corrected equivalent width 82- 89 E8.3 10W/m2/nm Flambda Continuum flux density at central wavelength of the Halpha profile (in W/m2/Å) 91- 98 E8.3 W/m2 Fline ? Line flux 100-107 E8.3 W/m2 e_Fline ? Uncertainty of line flux 109-113 F5.2 [Lsun] logLline ? Decimal logarithm of the line luminosity 115-118 F4.2 [Lsun] E_logLline ? Upper error of decimal logarithm of the line luminosity 120-123 F4.2 [Lsun] e_logLline ? Lower error of decimal logarithm of the line luminosity 125-129 F5.2 [Lsun] logLacc ? Decimal logarithm of the accretion luminosity 131-134 F4.2 [Lsun] E_logLacc ? Upper error of decimal logarithm of the accretion luminosity 136-139 F4.2 [Lsun] e_logLacc ? Lower error of decimal logarithm of the accretion luminosity 141-145 F5.2 [Msun/yr] logdM/dt ? Decimal logarithm of the mass accretion rate 147-150 F4.2 [Msun/yr] E_logdM/dt ? Upper error of decimal logarithm of the mass accretion rate 152-155 F4.2 [Msun/yr] e_logdM/dt ? Upper error of decimal logarithm of the mass accretion rate -------------------------------------------------------------------------------- Note (1): References as follows: 1 = Herbig & Bell (1988LicOB1111....1H 1988LicOB1111....1H, Cat. V/73) 2 = Hernandez et al. (2004AJ....127....1G 2004AJ....127....1G) 3 = Mendigutia et al. (2004AJ....127....1G 2004AJ....127....1G, 2011A&A...535A..99M 2011A&A...535A..99M) 4 = Pogodin et al. (2012AN....333..594P 2012AN....333..594P) 5 = ESO Programme 082.A-9011(A) 6 = ESO Programme 076.B-0055(A) 7 = Sartori et al. (2010AJ....139...27S 2010AJ....139...27S) 8 = Baines et al. (2006MNRAS.367..737B 2006MNRAS.367..737B) 9 = Miroshnichenko et al. (1999A&A...347..137M 1999A&A...347..137M) 10 = Boehm & Catala (1995A&A...301..155B 1995A&A...301..155B) 11 = Wheelwright et al. (2010MNRAS.401.1199W 2010MNRAS.401.1199W) 12 = Vieira et al. (2011A&A...526A..24V 2011A&A...526A..24V) 13 = Hernandez et al. (2005AJ....129..856H 2005AJ....129..856H) 14 = Oudmaijer & Drew (1999MNRAS.305..166O 1999MNRAS.305..166O) 15 = ESO Programme 085.A-9027(B) 16 = ESO Programme 082.D-0061(A) 17 = ESO Programme 084.A-9016(A) 18 = ESO Programme 083.A-9013(A) 19 = Carmona et al. (2010A&A...517A..67C 2010A&A...517A..67C) 20 = Spezzi et al. (2008ApJ...680.1295S 2008ApJ...680.1295S) 21 = Dunkin et al. (1997MNRAS.286..604D 1997MNRAS.286..604D, 1997MNRAS.290..165D 1997MNRAS.290..165D) 22 = ESO Programme 075.D-0177(A) 23 = ESO Programme 60.A-9022(C) 24 = Borges Fernandes et al. (2007MNRAS.377.1343B 2007MNRAS.377.1343B) 25 = ESO Programme 073.D-0609(A) 26 = Ababakr et al. (2017MNRAS.472..854A 2017MNRAS.472..854A) 27 = Manoj et al. (2006ApJ...653..657M 2006ApJ...653..657M) 28 = Frasca et al. (2016A&A...594A..39F 2016A&A...594A..39F) 29 = Polster et al. (2012A&A...542A..57P 2012A&A...542A..57P) 30 = Kucerova et al. (2013A&A...554A.143K 2013A&A...554A.143K) 31 = Acke et al. (2005A&A...436..209A 2005A&A...436..209A) 32 = Nakano et al. (2012AJ....143...61N 2012AJ....143...61N, Cat. J/AJ/143/61) 33 = Miroshnichenko et al. (2002A&A...388..563M 2002A&A...388..563M) 34 = Miroshnichenko et al. (2000A&AS..147....5M 2000A&AS..147....5M, Cat. J/A+AS/147/5) 35 = Zuckerman et al. (2008ApJ...683.1085Z 2008ApJ...683.1085Z) -------------------------------------------------------------------------------- Acknowledgements: Miguel Vioque, pymvdl(at)leeds.ac.uk
(End) Patricia Vannier [CDS] 09-Nov-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line