J/MNRAS/503/3931 Core-collapses supernovae host galaxies (Taggart+, 2021)
Core-collapse, superluminous, and gamma-ray burst supernova host galaxy
populations at low redshift: the importance of dwarf and starbursting galaxies.
Taggart K., Perley D.A.
<Mon. Not. R. Astron. Soc., 503, 3931-3952 (2021)>
=2021MNRAS.503.3931T 2021MNRAS.503.3931T (SIMBAD/NED BibCode)
ADC_Keywords: GRB ; Galaxies ; Supernovae ; Photometry, infrared ; Optical ;
Redshifts
Keywords: transients: supernovae - transients: gamma-ray bursts -
galaxies: dwarf - galaxies: photometry - galaxies: star formation
Abstract:
We present a comprehensive study of an unbiased sample of 150 nearby
(median redshift, z = 0.014) core-collapse supernova (CCSN) host
galaxies drawn from the All-Sky Automated Survey for Supernovae
(ASAS-SN) for direct comparison to the nearest long-duration gamma-ray
burst (LGRB) and superluminous supernova (SLSN) hosts. We use public
imaging surveys to gather multiwavelength photometry for all CCSN host
galaxies and fit their spectral energy distributions (SEDs) to derive
stellar masses and integrated star formation rates (SFRs). CCSNe
populate galaxies across a wide range of stellar masses, from blue and
compact dwarf galaxies to large spiral galaxies. We find 33+4-4
per cent of CCSNe are in dwarf galaxies (M* < 109 M☉) and
2+2-1 per cent are in dwarf starburst galaxies [specific star
formation rate (sSFR) > 10-8 yr-1]. We reanalyse low-redshift SLSN
and LGRB hosts from the literature (out to z < 0.3) in a homogeneous
way and compare against the CCSN host sample. The relative SLSN to
CCSN supernova rate is increased in low-mass galaxies and at high
sSFRs. These parameters are strongly covariant and we cannot break the
degeneracy between them with our current sample, although there is
some evidence that both factors may play a role. Larger unbiased
samples of CCSNe from projects such as ZTF and LSST will be needed to
determine whether host-galaxy mass (a proxy for metallicity) or sSFR
(a proxy for star formation intensity and potential IMF variation) is
more fundamental in driving the preference for SLSNe and LGRBs in
unusual galaxy environments.
Description:
This study presents a comprehensive study of an unbiased sample of 150
nearby (median redshift, z = 0.014) core-collapse supernova (CCSN)
host galaxies drawn from the All-Sky Automated Survey for Supernovae
(ASAS-SN) for direct comparison to the nearest long-duration gamma-ray
burst (LGRB) and superluminous supernova (SLSN) hosts. We use these
surveys of hosts galaxies to fit it their spectral energy
distributions (SEDs) to derive stellar masses and integrated star
formation rates (SFRs) and the specific star formation rates (sSFRs).
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablea1.dat 90 1916 Photometry of all galaxy samples including
ASAS-SN CCSN, LGRBs and SLSN used
in our analysis
refs.dat 131 50 References for tablea1.dat
tableb1.dat 151 149 Properties of ASAS-SN CCSN host galaxies,
including physical parameters derived from
the SED fitting procedure
tableb2.dat 109 17 Photometric properties of LGRB host galaxies
tableb3.dat 111 53 Photometric properties of the SLSN host
galaxies
--------------------------------------------------------------------------------
See also:
B/sn : Asiago Supernova Catalogue (Barbon et al., 1999-)
Byte-by-byte Description of file: tablea1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 A5 --- Type Object type
7- 23 A17 --- Name Object Name
25- 29 A5 --- Filter Photometric Filter
31 A1 --- l_mag Limit flag on mag
32- 38 F7.4 mag mag Magnitude in filter
40- 44 F5.3 mag e_mag ? Magnitude in filter uncertainty
46- 48 A3 --- System Filter System (1)
50- 52 A3 --- Ext Extinction flag (2)
54- 86 A33 --- Inst Instrument used
88- 90 A3 --- r_mag Reference in refs.dat file
--------------------------------------------------------------------------------
Note (1): Magnitudes are expressed in the conventional frame, this is indicated
as 'std' under the system column, unless given in AB form in the literature
where is indicated as 'AB'. For SDSS gri and PS1 filters, 'std' is identical
to 'AB'.
Note (2): Magnitudes are not corrected for foreground extinction and under the
Ext column as 'no', unless corrected for Galactic foreground
extinction in the literature, indicated by 'yes'.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: refs.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 3 A3 --- Ref Reference code
5- 23 A19 --- BibCode BibCode
25- 43 A19 --- Aut Author's name
45-131 A87 --- Com Comments
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 20 A20 --- Name Object name (4)
22- 28 A7 --- Class Classification
30- 31 I2 h RAh Right ascension (J2000)
33- 34 I2 min RAm Right ascension (J2000)
36- 40 F5.2 s RAs Right ascension (J2000)
42 A1 --- DE- Declination sign (J2000)
43- 44 I2 deg DEd Declination (J2000)
46- 47 I2 arcmin DEm Declination (J2000)
49- 53 F5.2 arcsec DEs Declination (J2000)
55- 62 F8.6 --- zsn Supernovae Redshift
64 I1 --- n_zsn ? Note on zsn (3)
66- 73 F8.6 --- zhost ? Host galaxy redshift
75 I1 --- n_zhost ? Note on zhost (3)
77- 82 F6.2 Mpc Distance Distance (1)
84- 88 F5.2 Mpc e_Distance Distance uncertainty
90- 94 F5.3 mag E(B-V) Color excess
96-100 F5.2 [Msun] logM* Stellar Mass
102-106 F5.2 [Msun] E_logM* Stellar Mass upper uncertainty
109-112 F4.2 [Msun] e_logM* Stellar Mass lower uncertainty
114-119 F6.3 Msun/yr SFR Star formation rate
121-126 F6.3 Msun/yr E_SFR Star formation rate upper uncertainty
129-133 F5.3 Msun/yr e_SFR Star formation rate lower uncertainty
135-139 F5.2 yr-1 sSFR Specific star formation rate (2)
141-145 F5.2 yr-1 E_sSFR Specific star formation rate upper
uncertainty
148-151 F4.2 yr-1 e_sSFR Specific star formation rate lower
uncertainty
--------------------------------------------------------------------------------
Note (1): Hubble flow distances are derived from the host galaxy if available in
NED and the uncertainty is derived from the velocity calculator which accounts
for the Virgo Cluster, Great Attractor and Shapley Supercluster infall
velocities. If a redshift is not available in NED, we search the literature
for redshifts derived from a host galaxy spectrum or narrow emission lines
from the SN spectrum, in these cases we adopt an 8 per cent uncertainty in
the distance (since this is the maximum uncertainty derived for the NED
velocity uncertainties). Finally, if the host galaxy redshift is unknown,
we use the SN redshift and give the luminosity distance, with an uncertainty
on the redshift of z=0.005.
Note (2): sSFR is based on the PDF marginalised over all the other parameters
in the SED fit. Thus it is slightly different from the derived SFR/Mass.
Note (3): Note on redshifts as follows:
1 = Host redshift was not obtained from NED, but from another source.
For 14m,14ms and 15nx the redshift was derived from narrow emission
lines of the host galaxy in the SN spectrum
(Zhang & Wang 2014ATel.6827....1Z 2014ATel.6827....1Z ; Vallely et al. 2018MNRAS.475.2344V 2018MNRAS.475.2344V;
Bose et al. 2018ApJ...862..107B 2018ApJ...862..107B). For 15ed and 15no the redshift was
derived from unresolved emission lines in the host galaxy spectrum
(Pastorello et al. 2015MNRAS.453.3649P 2015MNRAS.453.3649P,
Cat. J/MNRAS/453/3649; Benetti et al. 2018MNRAS.476..261B 2018MNRAS.476..261B).
2 = Host redshift was derived from spectroscopy of the host galaxies in Taggart
et al. (in prep).
3 = Host redshift was not obtained from NED, but from another source. For 16ll,
the redshift was derived from narrow emission lines of the host galaxy in
the SN spectrum (Tomasella et al. 2016ATel.9610....1T 2016ATel.9610....1T). For 16ns, there
is no available host galaxy redshift, therefore we use the best estimate
SN redshift of z=0.038 Turatto et al 2016ATel.9829....1T 2016ATel.9829....1T. Finally for
17qp, we use the best available redshift estimate from
Benetti et al. 2018MNRAS.476..261B 2018MNRAS.476..261B with a 50 per cent uncertainty.
4 = For these cases, SN redshift was not obtained from the ASAS-SN website, but
from another source. For 16ns, there is no available host galaxy redshift,
therefore we use the best estimate SN redshift of z=0.038
Turatto et al. 2016ATel.9829....1T 2016ATel.9829....1T. Finally for 17qp, we use the best
available redshift estimate from Benetti et al. 2018MNRAS.476..261B 2018MNRAS.476..261B with
a 50 per cent uncertainty.
Note (4): SN2016afa and SN2017ivu have the same host galaxy NGC 5962.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 7 A7 --- LGRB LGRB host galaxy name
9- 15 A7 --- Class Classification
17- 18 I2 h RAh Right ascension (J2000)
20- 21 I2 min RAm Right ascension (J2000)
23- 27 F5.2 s RAs Right ascension (J2000)
29 A1 --- DE- Declination sign (J2000)
30- 31 I2 deg DEd Declination (J2000)
33- 34 I2 arcmin DEm Declination (J2000)
36- 40 F5.2 arcsec DEs Declination (J2000)
42- 46 F5.3 --- z Redshift
48- 52 F5.3 mag E(B-V) Color excess
54- 58 F5.2 [Msun] logM* Stellar Mass
60- 64 F5.2 [Msun] E_logM* Stellar Mass upper uncertainty
67- 70 F4.2 [Msun] e_logM* Stellar Mass lower uncertainty
72- 77 F6.3 Msun/yr SFR Star formation rate
79- 84 F6.3 Msun/yr E_SFR Star formation rate upper uncertainty
87- 91 F5.3 Msun/yr e_SFR Star formation rate lower uncertainty
93- 97 F5.2 yr-1 sSFR Specific star formation rate (1)
99-103 F5.2 yr-1 E_sSFR Specific star formation rate upper
uncertainty
106-109 F4.2 yr-1 e_sSFR Specific star formation rate lower
uncertainty
--------------------------------------------------------------------------------
Note (1): sSFR is based on the PDF marginalised over all the other parameters in
the SED fit. Thus it is slightly different from the derived SFR/Mass.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tableb3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 A9 --- SLSN SLSN host galaxy name
11- 12 A2 --- Class Classification
14 A1 --- n_Class Classification note (1)
16- 17 I2 h RAh Right ascension (J2000)
19- 20 I2 min RAm Right ascension (J2000)
22- 27 F6.3 s RAs Right ascension (J2000)
29 A1 --- DE- Declination sign (J2000)
30- 31 I2 deg DEd Declination (J2000)
33- 34 I2 arcmin DEm Declination (J2000)
36- 40 F5.2 arcsec DEs Declination (J2000)
42- 47 F6.4 --- z Redshift
49- 53 F5.3 mag E(B-V) Color excess
55- 59 F5.2 [Msun] logM* Stellar Mass
61- 65 F5.2 [Msun] E_logM* Stellar Mass upper uncertainty
68- 71 F4.2 [Msun] e_logM* Stellar Mass lower uncertainty
73- 78 F6.3 Msun/yr SFR Star formation rate
80- 85 F6.3 Msun/yr E_SFR Star formation rate upper uncertainty
88- 92 F5.3 Msun/yr e_SFR Star formation rate lower uncertainty
94- 99 F6.2 yr-1 sSFR Specific star formation rate (2)
101-105 F5.2 yr-1 E_sSFR Specific star formation rate upper
uncertainty
108-111 F4.2 yr-1 e_sSFR Specific star formation rate lower
uncertainty
--------------------------------------------------------------------------------
Note (1): Possible SLSN-I.
Note (2): sSFR is based on the PDF marginalised over all the other parameters in
the SED fit. Thus it is slightly different from the derived SFR/Mass.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Luc Trabelsi [CDS] 04-Apr-2024