J/MNRAS/503/3931     Core-collapses supernovae host galaxies    (Taggart+, 2021)

Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: the importance of dwarf and starbursting galaxies. Taggart K., Perley D.A. <Mon. Not. R. Astron. Soc., 503, 3931-3952 (2021)> =2021MNRAS.503.3931T 2021MNRAS.503.3931T (SIMBAD/NED BibCode)
ADC_Keywords: GRB ; Galaxies ; Supernovae ; Photometry, infrared ; Optical ; Redshifts Keywords: transients: supernovae - transients: gamma-ray bursts - galaxies: dwarf - galaxies: photometry - galaxies: star formation Abstract: We present a comprehensive study of an unbiased sample of 150 nearby (median redshift, z = 0.014) core-collapse supernova (CCSN) host galaxies drawn from the All-Sky Automated Survey for Supernovae (ASAS-SN) for direct comparison to the nearest long-duration gamma-ray burst (LGRB) and superluminous supernova (SLSN) hosts. We use public imaging surveys to gather multiwavelength photometry for all CCSN host galaxies and fit their spectral energy distributions (SEDs) to derive stellar masses and integrated star formation rates (SFRs). CCSNe populate galaxies across a wide range of stellar masses, from blue and compact dwarf galaxies to large spiral galaxies. We find 33+4-4 per cent of CCSNe are in dwarf galaxies (M* < 109 M) and 2+2-1 per cent are in dwarf starburst galaxies [specific star formation rate (sSFR) > 10-8 yr-1]. We reanalyse low-redshift SLSN and LGRB hosts from the literature (out to z < 0.3) in a homogeneous way and compare against the CCSN host sample. The relative SLSN to CCSN supernova rate is increased in low-mass galaxies and at high sSFRs. These parameters are strongly covariant and we cannot break the degeneracy between them with our current sample, although there is some evidence that both factors may play a role. Larger unbiased samples of CCSNe from projects such as ZTF and LSST will be needed to determine whether host-galaxy mass (a proxy for metallicity) or sSFR (a proxy for star formation intensity and potential IMF variation) is more fundamental in driving the preference for SLSNe and LGRBs in unusual galaxy environments. Description: This study presents a comprehensive study of an unbiased sample of 150 nearby (median redshift, z = 0.014) core-collapse supernova (CCSN) host galaxies drawn from the All-Sky Automated Survey for Supernovae (ASAS-SN) for direct comparison to the nearest long-duration gamma-ray burst (LGRB) and superluminous supernova (SLSN) hosts. We use these surveys of hosts galaxies to fit it their spectral energy distributions (SEDs) to derive stellar masses and integrated star formation rates (SFRs) and the specific star formation rates (sSFRs). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea1.dat 90 1916 Photometry of all galaxy samples including ASAS-SN CCSN, LGRBs and SLSN used in our analysis refs.dat 131 50 References for tablea1.dat tableb1.dat 151 149 Properties of ASAS-SN CCSN host galaxies, including physical parameters derived from the SED fitting procedure tableb2.dat 109 17 Photometric properties of LGRB host galaxies tableb3.dat 111 53 Photometric properties of the SLSN host galaxies -------------------------------------------------------------------------------- See also: B/sn : Asiago Supernova Catalogue (Barbon et al., 1999-) Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 5 A5 --- Type Object type 7- 23 A17 --- Name Object Name 25- 29 A5 --- Filter Photometric Filter 31 A1 --- l_mag Limit flag on mag 32- 38 F7.4 mag mag Magnitude in filter 40- 44 F5.3 mag e_mag ? Magnitude in filter uncertainty 46- 48 A3 --- System Filter System (1) 50- 52 A3 --- Ext Extinction flag (2) 54- 86 A33 --- Inst Instrument used 88- 90 A3 --- r_mag Reference in refs.dat file -------------------------------------------------------------------------------- Note (1): Magnitudes are expressed in the conventional frame, this is indicated as 'std' under the system column, unless given in AB form in the literature where is indicated as 'AB'. For SDSS gri and PS1 filters, 'std' is identical to 'AB'. Note (2): Magnitudes are not corrected for foreground extinction and under the Ext column as 'no', unless corrected for Galactic foreground extinction in the literature, indicated by 'yes'. -------------------------------------------------------------------------------- Byte-by-byte Description of file: refs.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 3 A3 --- Ref Reference code 5- 23 A19 --- BibCode BibCode 25- 43 A19 --- Aut Author's name 45-131 A87 --- Com Comments -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 20 A20 --- Name Object name (4) 22- 28 A7 --- Class Classification 30- 31 I2 h RAh Right ascension (J2000) 33- 34 I2 min RAm Right ascension (J2000) 36- 40 F5.2 s RAs Right ascension (J2000) 42 A1 --- DE- Declination sign (J2000) 43- 44 I2 deg DEd Declination (J2000) 46- 47 I2 arcmin DEm Declination (J2000) 49- 53 F5.2 arcsec DEs Declination (J2000) 55- 62 F8.6 --- zsn Supernovae Redshift 64 I1 --- n_zsn ? Note on zsn (3) 66- 73 F8.6 --- zhost ? Host galaxy redshift 75 I1 --- n_zhost ? Note on zhost (3) 77- 82 F6.2 Mpc Distance Distance (1) 84- 88 F5.2 Mpc e_Distance Distance uncertainty 90- 94 F5.3 mag E(B-V) Color excess 96-100 F5.2 [Msun] logM* Stellar Mass 102-106 F5.2 [Msun] E_logM* Stellar Mass upper uncertainty 109-112 F4.2 [Msun] e_logM* Stellar Mass lower uncertainty 114-119 F6.3 Msun/yr SFR Star formation rate 121-126 F6.3 Msun/yr E_SFR Star formation rate upper uncertainty 129-133 F5.3 Msun/yr e_SFR Star formation rate lower uncertainty 135-139 F5.2 yr-1 sSFR Specific star formation rate (2) 141-145 F5.2 yr-1 E_sSFR Specific star formation rate upper uncertainty 148-151 F4.2 yr-1 e_sSFR Specific star formation rate lower uncertainty -------------------------------------------------------------------------------- Note (1): Hubble flow distances are derived from the host galaxy if available in NED and the uncertainty is derived from the velocity calculator which accounts for the Virgo Cluster, Great Attractor and Shapley Supercluster infall velocities. If a redshift is not available in NED, we search the literature for redshifts derived from a host galaxy spectrum or narrow emission lines from the SN spectrum, in these cases we adopt an 8 per cent uncertainty in the distance (since this is the maximum uncertainty derived for the NED velocity uncertainties). Finally, if the host galaxy redshift is unknown, we use the SN redshift and give the luminosity distance, with an uncertainty on the redshift of z=0.005. Note (2): sSFR is based on the PDF marginalised over all the other parameters in the SED fit. Thus it is slightly different from the derived SFR/Mass. Note (3): Note on redshifts as follows: 1 = Host redshift was not obtained from NED, but from another source. For 14m,14ms and 15nx the redshift was derived from narrow emission lines of the host galaxy in the SN spectrum (Zhang & Wang 2014ATel.6827....1Z 2014ATel.6827....1Z ; Vallely et al. 2018MNRAS.475.2344V 2018MNRAS.475.2344V; Bose et al. 2018ApJ...862..107B 2018ApJ...862..107B). For 15ed and 15no the redshift was derived from unresolved emission lines in the host galaxy spectrum (Pastorello et al. 2015MNRAS.453.3649P 2015MNRAS.453.3649P, Cat. J/MNRAS/453/3649; Benetti et al. 2018MNRAS.476..261B 2018MNRAS.476..261B). 2 = Host redshift was derived from spectroscopy of the host galaxies in Taggart et al. (in prep). 3 = Host redshift was not obtained from NED, but from another source. For 16ll, the redshift was derived from narrow emission lines of the host galaxy in the SN spectrum (Tomasella et al. 2016ATel.9610....1T 2016ATel.9610....1T). For 16ns, there is no available host galaxy redshift, therefore we use the best estimate SN redshift of z=0.038 Turatto et al 2016ATel.9829....1T 2016ATel.9829....1T. Finally for 17qp, we use the best available redshift estimate from Benetti et al. 2018MNRAS.476..261B 2018MNRAS.476..261B with a 50 per cent uncertainty. 4 = For these cases, SN redshift was not obtained from the ASAS-SN website, but from another source. For 16ns, there is no available host galaxy redshift, therefore we use the best estimate SN redshift of z=0.038 Turatto et al. 2016ATel.9829....1T 2016ATel.9829....1T. Finally for 17qp, we use the best available redshift estimate from Benetti et al. 2018MNRAS.476..261B 2018MNRAS.476..261B with a 50 per cent uncertainty. Note (4): SN2016afa and SN2017ivu have the same host galaxy NGC 5962. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 7 A7 --- LGRB LGRB host galaxy name 9- 15 A7 --- Class Classification 17- 18 I2 h RAh Right ascension (J2000) 20- 21 I2 min RAm Right ascension (J2000) 23- 27 F5.2 s RAs Right ascension (J2000) 29 A1 --- DE- Declination sign (J2000) 30- 31 I2 deg DEd Declination (J2000) 33- 34 I2 arcmin DEm Declination (J2000) 36- 40 F5.2 arcsec DEs Declination (J2000) 42- 46 F5.3 --- z Redshift 48- 52 F5.3 mag E(B-V) Color excess 54- 58 F5.2 [Msun] logM* Stellar Mass 60- 64 F5.2 [Msun] E_logM* Stellar Mass upper uncertainty 67- 70 F4.2 [Msun] e_logM* Stellar Mass lower uncertainty 72- 77 F6.3 Msun/yr SFR Star formation rate 79- 84 F6.3 Msun/yr E_SFR Star formation rate upper uncertainty 87- 91 F5.3 Msun/yr e_SFR Star formation rate lower uncertainty 93- 97 F5.2 yr-1 sSFR Specific star formation rate (1) 99-103 F5.2 yr-1 E_sSFR Specific star formation rate upper uncertainty 106-109 F4.2 yr-1 e_sSFR Specific star formation rate lower uncertainty -------------------------------------------------------------------------------- Note (1): sSFR is based on the PDF marginalised over all the other parameters in the SED fit. Thus it is slightly different from the derived SFR/Mass. -------------------------------------------------------------------------------- Byte-by-byte Description of file: tableb3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- SLSN SLSN host galaxy name 11- 12 A2 --- Class Classification 14 A1 --- n_Class Classification note (1) 16- 17 I2 h RAh Right ascension (J2000) 19- 20 I2 min RAm Right ascension (J2000) 22- 27 F6.3 s RAs Right ascension (J2000) 29 A1 --- DE- Declination sign (J2000) 30- 31 I2 deg DEd Declination (J2000) 33- 34 I2 arcmin DEm Declination (J2000) 36- 40 F5.2 arcsec DEs Declination (J2000) 42- 47 F6.4 --- z Redshift 49- 53 F5.3 mag E(B-V) Color excess 55- 59 F5.2 [Msun] logM* Stellar Mass 61- 65 F5.2 [Msun] E_logM* Stellar Mass upper uncertainty 68- 71 F4.2 [Msun] e_logM* Stellar Mass lower uncertainty 73- 78 F6.3 Msun/yr SFR Star formation rate 80- 85 F6.3 Msun/yr E_SFR Star formation rate upper uncertainty 88- 92 F5.3 Msun/yr e_SFR Star formation rate lower uncertainty 94- 99 F6.2 yr-1 sSFR Specific star formation rate (2) 101-105 F5.2 yr-1 E_sSFR Specific star formation rate upper uncertainty 108-111 F4.2 yr-1 e_sSFR Specific star formation rate lower uncertainty -------------------------------------------------------------------------------- Note (1): Possible SLSN-I. Note (2): sSFR is based on the PDF marginalised over all the other parameters in the SED fit. Thus it is slightly different from the derived SFR/Mass. -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Luc Trabelsi [CDS] 04-Apr-2024
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line