J/MNRAS/519/5554      Pristine survey. XX.                     (Arentsen+, 2023)

The Pristine survey. XX. GTC follow-up observations of extremely metal-poor stars identified from Pristine and LAMOST. Arentsen A., Aguado D.S., Sestito F., Gonzalez-Hernandez J.I., Martin N.F., Starkenburg E., Jablonka P., Yuan Z. <Mon. Not. R. Astron. Soc. 519, 5554-5566 (2023)> =2023MNRAS.519.5554A 2023MNRAS.519.5554A (SIMBAD/NED BibCode)
ADC_Keywords: Stars, metal-deficient ; Radial velocities ; Abundances ; Effective temperatures ; Photometry, SDSS ; Stars, distances Keywords: techniques: spectroscopic - stars: chemically peculiar - stars: Population II - Galaxy: halo Abstract: Ultra metal-poor stars ([Fe/H]←4.0) are very rare, and finding them is a challenging task. Both narrow-band photometry and low-resolution spectroscopy have been useful tools for identifying candidates, and in this work we combine both approaches. We cross-matched metallicity-sensitive photometry from the Pristine survey with the low-resolution spectroscopic LAMOST database, and re- analysed all LAMOST spectra with [Fe/H]Pristine←2.5. We find that ∼1/3rd of this sample (selected without [Fe/H]_Pristine quality cuts) also have spectroscopic [Fe/H]←2.5. From this sample, containing many low signal-to- noise (S/N) spectra, we selected eleven stars potentially having [Fe/H]←4.0 or [Fe/H]←3.0 with very high carbon abundances, and we performed higher S/N medium-resolution spectroscopic follow-up with OSIRIS on the 10.4m Gran Telescopio Canarias (GTC). We confirm their extremely low metallicities, with a mean of [Fe/H]=-3.4 and the most metal-poor star having [Fe/H]=-3.8. Three of these are clearly carbon-enhanced metal-poor (CEMP) stars with +1.65<[C/Fe]<+2.45. The two most carbon-rich stars are either among the most metal-poor CEMP-s stars or the most carbon-rich CEMP-no stars known, the third is likely a CEMP-no star. We derived orbital properties for the OSIRIS sample and find that only one of our targets can be confidently associated with known substructures/accretion events, and that three out of four inner halo stars have prograde orbits. Large spectroscopic surveys may contain many hidden extremely and ultra metal-poor stars, and adding additional information from e.g. photometry as in this work can uncover them more efficiently and confidently. Description: Pristine metal-poor candidate LAMOST spectra were re-analysed with a dedicated metal-poor analysis tool (FERRE). A long list of extremely metal-poor candidates are available in the first table. The other three tables correspond to eleven promising stars that were followed up with OSIRIS, and contain the relevant information for those stars. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 297 533 *EMP candidates from Pristine and LAMOST table2.dat 111 11 Summary of OSIRIS observations table3.dat 502 11 Orbital properties of the OSIRIS sample table4.dat 51 11 Stellar parameters of the OSIRIS sample -------------------------------------------------------------------------------- Note on table1.dat: Figures with spectral fits corresponding to each of the entries in this table are available in the supplementary materials at MNRAS. -------------------------------------------------------------------------------- See also: I/355 : Gaia DR3 Part 1. Main source (Gaia Collaboration, 2022) V/164 : LAMOST DR5 catalogs (Luo+, 2019) J/AN/338/686 : Pristine survey II. Bright stars abundances (Caffau+, 2017) J/MNRAS/472/2963 : Metallicities of Pristine stars (Youakim+, 2017) J/MNRAS/487/3797 : A bright star sample observed with SOPHIE (Bonifacio+, 2019) Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 38 A38 --- LAMOST Name of the LAMOST spectrum analysed 40- 54 F15.11 deg RAdeg Right ascension (ICRS) at Ep=2016.0 from Gaia DR3 56- 69 F14.11 deg DEdeg Declination (ICRS) at Ep=2016.0 from Gaia DR3 71- 89 I19 --- GaiaDR3 Gaia DR3 source_id 91-108 F18.13 K TeffFERRE Effective temperature from FERRE 110-130 F21.15 K e_TeffFERRE ?=-999.999 Uncertainty in the effective temperature 132-149 F18.16 [cm/s2] loggFERRE Surface gravity from FERRE 151-171 F21.16 [cm/s2] e_loggFERRE ?=-999.999 Uncertainty in the surface gravity 173-191 F19.16 [-] [Fe/H]FERRE Metallicity [Fe/H] from FERRE 193-213 F21.16 [-] e_[Fe/H]FERRE ?=-999.999 Uncertainty in [Fe/H] 215-233 F19.16 [-] [C/Fe]FERRE ?=-1.0 Carbon abundance [C/Fe] from FERRE 235-256 F22.16 [-] e_[C/Fe]FERRE ?=-999.999 Uncertainty in [C/Fe] 258-277 F20.16 --- SNRFERRE Signal-to-noise ratio 279-297 F19.16 [-] logchi2FERRE Chi squared of the fit -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- Star Designation assigned in this work (LPNN) 6- 24 A19 --- LAMOST LAMOST designation (JHHMMSS.ss+DDMMSS.s) 26- 44 I19 --- GaiaDR3 Gaia DR3 source_id 46- 47 I2 h RAh Right Ascension (J2000) 49- 50 I2 min RAm Right Ascension (J2000) 52- 56 F5.2 s RAs Right Ascension (J2000) 57 A1 --- DE- Declination sign (J2000) 58- 59 I2 deg DEd Declination (J2000) 61- 62 I2 arcmin DEm Declination (J2000) 64- 67 F4.1 arcsec DEs Declination (J2000) 69- 73 F5.2 mag umag SDSS u-band magnitude 75- 79 F5.2 mag gmag SDSS g-band magnitude 81- 84 I4 s ExpTime total exposure time 86- 87 I2 --- SN392 Signal-to-noise at 392nm 89- 91 I3 --- SN450 Signal-to-noise at 450nm 93 I1 --- Nobs [1/4] Number of observation 95-111 A17 --- Obs.Date Observation date(s) -------------------------------------------------------------------------------- Byte-by-byte Description of file: table3.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- Star Designation assigned in this work (LPNN) 6- 12 F7.2 km/s RV Radial velocity 14- 15 I2 km/s e_RV Radial velocity uncertainty 17- 21 F5.2 kpc Dist Distance 23- 26 F4.2 kpc e_Dist Distance uncertainty 28- 31 F4.2 --- pDist Probability of distance solution 33- 51 F19.16 kpc zmax Maximum distance from the Milky Way plane 53- 71 F19.16 kpc E_zmax Positive asymmetric zmax uncertainty 73- 91 F19.16 kpc e_zmax Negative asymmetric zmax uncertainty 93-110 F18.15 kpc apo Apocentric distance 112-131 F20.16 kpc E_apo Positive asymmetric apo uncertainty 133-151 F19.16 kpc e_apo Negative asymmetric apo uncertainty 153-171 F19.16 kpc peri Pericentric distance 173-190 F18.16 kpc E_peri Positive asymmetric peri uncertainty 192-209 F18.16 kpc e_peri Negative asymmetric peri uncertainty 211-228 F18.16 --- ell Ellipticity 230-247 F18.16 --- E_ell Positive asymmetric ell uncertainty 249-266 F18.16 --- e_ell Negative asymmetric ell uncertainty 268-286 F19.12 kpc.km2/s2 E Energy 288-306 F19.13 kpc.km2/s2 E_E Positive asymmetric E uncertainty 308-326 F19.13 kpc.km2/s2 e_E Negative asymmetric E uncertainty 328-347 F20.14 kpc.km/s jp J_phi action 349-366 F18.14 kpc.km/s E_jp Positive asymmetric jp uncertainty 368-385 F18.14 kpc.km/s e_jp Negative asymmetric jp uncertainty 387-404 F18.14 kpc.km/s jr J_r action 406-423 F18.14 kpc.km/s E_jr Positive asymmetric jr uncertainty 425-443 F19.15 kpc.km/s e_jr Negative asymmetric jp uncertainty 445-463 F19.14 kpc.km/s jz J_z action 465-483 F19.15 kpc.km/s E_jz Positive asymmetric jr uncertainty 485-502 F18.14 kpc.km/s e_jz Negative asymmetric jr uncertainty -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 4 A4 --- Star Designation assigned in this work (LPNN) 6- 9 I4 K Teff Effective temperature from FERRE 11- 13 I3 K e_Teff Uncertainty in Teff 15- 18 F4.2 [cm/s2] logg Surface gravity from FERRE 20- 23 F4.2 [cm/s2] e_logg Uncertainty in logg 25- 29 F5.2 [-] [Fe/H] Metallicity [Fe/H] from FERRE 31- 34 F4.2 [-] e_[Fe/H] Uncertainty in [Fe/H] 36 A1 --- l_[C/Fe] Limit flag on [C/Fe] 37- 41 F5.2 [-] [C/Fe] Carbon abundance [C/Fe] from FERRE (1) 43- 46 F4.2 [-] e_[C/Fe] ? Uncertainty in [C/Fe] 48- 51 F4.2 --- Corr ? Evolutionary carbon correction (according to Placco et al., 2014ApJ...797...21P 2014ApJ...797...21Pi, Cat. J/ApJ/797/21) -------------------------------------------------------------------------------- Note (1): Solar carbon abundance adopted from Asplund et al. (2005ASPC..336...25A 2005ASPC..336...25A) -------------------------------------------------------------------------------- Acknowledgements: Anke Arentsen, anke.arentsen(at)ast.cam.ac.uk References: Starkenburg et al., Paper I 2017MNRAS.471.2587S 2017MNRAS.471.2587S Caffau et al., Paper II 2017AN....338..686C 2017AN....338..686C, Cat. J/AN/338/686 Youakim et al., Paper III 2017MNRAS.472.2963Y 2017MNRAS.472.2963Y, Cat. J/MNRAS/472/2963 Starkenburg et al., Paper IV 2018MNRAS.481.3838S 2018MNRAS.481.3838S Bonifacio et al., Paper V 2019MNRAS.487.3797B 2019MNRAS.487.3797B, Cat. J/MNRAS/487/3797 Aguado et al., Paper VI 2019MNRAS.490.2241A 2019MNRAS.490.2241A Starkenburg et al., Paper VII 2019MNRAS.490.5757S 2019MNRAS.490.5757S Youakim et al., Paper VIII 2020MNRAS.492.4986Y 2020MNRAS.492.4986Y Venn et al., Paper IX 2020MNRAS.492.3241V 2020MNRAS.492.3241V Sestito et al., Paper X 2020MNRAS.497L...7S 2020MNRAS.497L...7S Caffau et al., Paper XI 2020MNRAS.493.4677C 2020MNRAS.493.4677C Kielty et al., Paper XII 2021MNRAS.506.1438K 2021MNRAS.506.1438K Fernandez-Alvar et al., Paper XIII 2021MNRAS.508.1509F 2021MNRAS.508.1509F Lardo et al., Paper XIV 2021MNRAS.508.3068L 2021MNRAS.508.3068L Lucchesi et al., Paper XV 2022MNRAS.511.1004L 2022MNRAS.511.1004L Martin et al., Paper XVI 2022MNRAS.516.5331M 2022MNRAS.516.5331M Yuan et al., Paper XVII 2022MNRAS.514.1664Y 2022MNRAS.514.1664Y Errani et al., Paper XVIII 2022MNRAS.514.3532E 2022MNRAS.514.3532E Caffau et al., Paper XIX 2023MNRAS.518.3796C 2023MNRAS.518.3796C
(End) Patricia Vannier [CDS] 18-Jan-2023
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line