J/other/RAA/21.292 LAMOST Time-Domain survey, first results (Wang+, 2021)
LAMOST Time-Domain survey: first results of four K2 plates.
Wang S., Zhang H.-T., Bai Z.-R., Yuan H.-L., Xiang M.-S., Zhang B., Hou W.,
Zuo F., Du B., Li T.-D., Yang F., Cui K.-M., Wang Y.-L., Li J., Kovalev M.,
Li C.-Q., Tian H., Zong W.-K., Han H.-G., Liu C., Luo A.-L., Shi J.-R.,
Fu J.-N., Bi S.-L., Han Z.-W., Liu J.-F.
<Res. Astron. Astrophys., 21, 292 (2021)>
=2021RAA....21..292W 2021RAA....21..292W (SIMBAD/NED BibCode)
ADC_Keywords: Surveys ; Binaries, spectroscopic ; Stars, masses ;
Effective temperatures ; Radial velocities ; Optical
Keywords: astronomical database: miscellaneous - catalogs -
stars: fundamental parameters - binaries: general -
binaries: spectroscopic
Abstract:
From Oct. 2019 to Apr. 2020, LAMOST performed a time-domain (TD)
spectroscopic survey of four K2 plates with both low- and
medium-resolution observations. The low-resolution spectroscopic
survey acquired 282 exposures (∼46.6h) over 25 nights, yielding a
total of about 767000 spectra, and the medium-resolution survey took
177 exposures (∼49.1h) over 27 nights, collecting about 478000
spectra. More than 70%/50% of low-resolution/medium-resolution spectra
have signal-to-noise ratio higher than 10. We determine stellar
parameters (e.g., Teff, logg, [Fe/H]) and radial velocity (RV) with
different methods, including LASP, DD-Payne and SLAM. In general,
these parameter estimations from different methods show good
agreement, and the stellar parameter values are consistent with those
of APOGEE. We use the Gaia DR2 RV values to calculate a median RV zero
point (RVZP) for each spectrograph exposure by exposure, and the
RVZP-corrected RVs agree well with the APOGEE data. The stellar
evolutionary and spectroscopic masses are estimated based on the
stellar parameters, multi-band magnitudes, distances and extinction
values. Finally, we construct a binary catalog including about 2700
candidates by analyzing their light curves, fitting the RV data,
calculating the binarity parameters from medium-resolution spectra and
cross-matching the spatially resolved binary catalog from Gaia EDR3.
The LAMOST TD survey is expected to represent a breakthrough in
various scientific topics, such as binary systems, stellar activity,
stellar pulsation, etc.
Description:
We performed this survey with both the LRS and MRS observations. For
LRS observation, the wavelength coverage is 3650-9000Å (Luo et al.,
2015RAA....15.1095L 2015RAA....15.1095L). For MRS observation, the blue and red arms cover
wavelength ranges from 4950Å to 5350Å and from 6300Å to
6800Å, respectively (Liu et al., 2020, in prep. arXiv:2005.07210).
The LRS survey of each plate was observed with 3-10 single 600s
exposures in one observation night; the MRS survey of each plate was
observed with 3-8 single 1200s exposures.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table2.dat 92 9358 Mass estimations of the sample stars
table3.dat 214 2366 Binary candidates of the four K2 plates
tablea1.dat 124 9189 Stellar parameters and RV from LASP estimation
with LRS Data
tablea2.dat 124 6602 Stellar parameters and RV from LASP estimation
with MRS Data
tablea3.dat 124 9237 Stellar parameters and RV from DD-Payne
estimation with LRS Data
tablea4.dat 124 7224 Stellar parameters and RV from SLAM estimation
with MRS Data
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 19 A19 --- Name Name (JHHMMSS.ss+DDMMSS.s)
21- 24 F4.2 Msun Mgrid ?=- Mass estimation from the MIST grids
27- 30 F4.2 Msun e_Mgrid ?=- Error on Mgrid (lower value)
32- 36 F5.2 Msun E_Mgrid ?=- Error on Mgrid (upper value)
38- 41 F4.2 Msun Miso ?=- Mass estimation using the "isochrones" code
43- 46 F4.2 Msun e_Miso ?=- Miso error
48- 51 I4 kpc Dist Distance from Gaia DR2
54- 57 I4 kpc e_Dist Error on Dist (lower value)
59- 62 I4 kpc E_Dist Error on Dist (upper value)
64- 67 F4.2 mag E(B-V) ?=- Reddening from PS1 dust map,
calculated as 0.84xBayesian19
69- 73 F5.2 mag Mbolc ?=- Weighted average value of bolometric
magnitude
75- 78 F4.2 mag e_Mbolc ?=- Weighted average value of bolometric
magnitude error
80- 85 F6.2 Msun Mspec ?=- Spectroscopic mass estimation
87- 92 F6.2 Msun e_Mspec ?=- Spectroscopic mass estimation error
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table3.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 19 A19 --- Name Name (JHHMMSS.ss+DDMMSS.s)
21- 28 F8.4 d Prv ?=- The Joker period from RV
31- 37 F7.4 d e_Prv ?=- The Joker period from RV error (upper value)
39- 45 F7.4 d E_Prv ?=- The Joker period from RV error (upper value)
47- 51 F5.3 --- e ?=- The Joker eccentricity
54- 58 F5.3 --- e_e ?=- The Joker eccentricity error (lower value)
60- 64 F5.3 --- E_e ?=- The Joker eccentricity error (upper value)
66- 70 F5.2 rad w ?=- The Joker argument of pericenter
73- 76 F4.2 rad e_w ?=- The Joker argument of pericenter error
(lower value)
78- 81 F4.2 rad E_w ?=- The Joker argument of pericenter error
(upper value)
83- 87 F5.2 --- M0 ?=- The Joker mean anomaly at reference time
90- 94 F5.2 --- e_M0 ?=- The Joker mean anomaly error (lower value)
96- 99 F4.2 --- E_M0 ?=- The Joker mean anomaly error (upper value)
101-105 F5.1 km/s K ?=- The Joker RV semi-amplitude
108-112 F5.1 km/s e_K ?=- The Joker RV semi-amplitude error
(lower value)
114-118 F5.1 km/s E_K ?=- The Joker RV semi-amplitude error
(upper value)
120-125 F6.1 km/s v0 ?=- The Joker center of mass velocity
128-131 F4.1 km/s e_v0 ?=- The Joker center of mass velocity error
(lower value)
133-136 F4.1 km/s E_v0 ?=- The Joker center of mass velocity error
(upper value)
138-143 F6.4 Msun f(M) ?=- The Joker mass function
146-151 F6.4 Msun e_f(M) ?=- The Joker mass function error (lower value)
153-158 F6.4 Msun E_f(M) ?=- The Joker mass function error (upper value)
160-163 F4.2 Msun M2min ?=- The Joker minimum mass of the secondary
166-169 F4.2 Msun e_M2min ?=- The Joker minimum mass of the secondary
error (lower value)
171-174 F4.2 Msun E_M2min ?=- The Joker minimum mass of the secondary
error (upper value)
176-180 A5 --- Type Type (EA, EB, EW or RSCVN)
181 A1 --- --- [/]
182-189 A8 --- Survey Survey
191-197 F7.4 d Plc ?=- Period from light curve
199-202 F4.2 --- Pbin ?=- binary≥0.9
204-207 A4 --- Class Class (MSMS, WDMS or MS??)
209-214 I6 AU Sep ?=- Separation between components
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea?.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 19 A19 --- Name Name (JHHMMSS.ss+DDMMSS.s)
21- 38 A18 --- Field Field name
40- 48 F9.5 deg RAdeg Right ascension (J2000)
50- 57 F8.5 deg DEdeg Declination (J2000)
59- 63 I5 K Teff Effective temperature
65- 69 I5 K e_Teff Effective temperature error
71- 75 F5.2 [cm/s2] logg Surface gravity
77- 81 F5.2 [cm/s2] e_logg Surface gravity error
83- 88 F6.2 [-] [Fe/H] Metallicity
90- 94 F5.2 [-] e_[Fe/H] Metallicity error
96-102 F7.2 km/s RV Radial velocity
104-109 F6.2 km/s e_RV Radial velocity error
111-117 F7.2 km/s RVcor Corrected radial velocity
119-124 F6.2 km/s e_RVcor Corrected radial velocity error
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Patricia Vannier [CDS] 17-Feb-2022