VI/144      Nebular [OIII] collision strengths - SS3             (Storey+, 2015)

Effective collision strengths for excitation and de-excitation of nebular [OIII] optical and infrared lines with kappa distributed electron energies. Storey P.J., Sochi T. <Mon. Not. R. Astron. Soc. 449, 2974 (2015)> =2015MNRAS.449.2974S 2015MNRAS.449.2974S =2015yCat.6144....0S 2015yCat.6144....0S
ADC_Keywords: Atomic physics Keywords: atomic data - atomic processes - radiation mechanisms: non-thermal - planetary nebulae: general - infrared: general Abstract: The list consists of effective collision strengths in the electron excitation (Upsilon) and de-excitation (Downsilon) with a kappa electron energy distribution as a function of the electron temperature and kappa for 10 forbidden transitions between the five lowest energy levels of the astronomically abundant doubly-ionized oxygen ion, O2+, in an intermediate coupling scheme using the Breit-Pauli relativistic terms as implemented in an R-matrix atomic scattering code (Berrington et al., 1995). An atomic target for the R-matrix scattering defined by 72 atomic terms is used in these calculations with Gailitis averaging in the region beneath thresholds where the effective quantum number is greater than 10. The raw collision strength data are obtained from a list created previously by the authors (Storey et al., 2014MNRAS.441.3028S 2014MNRAS.441.3028S, Cat. VI/141). The limits of the effective collision strength data are the same as the limits of the original raw collision strength data, that is the data apply for a temperature range between about 100-25000K with a free electron excitation energy up to about 1.3 Rydberg. These limits are adopted mainly for relevance to planetary nebulae and HII regions. Description: The data set consists of ten Upsilon files labeled 'up_mn.dat' and ten Downsilon files labeled 'do_mn.dat' where m=1,2,3,4 and n=2,3,4,5 with m<n. The indices m and n refer respectively to the lower and upper level index as given in the table below. The Upsilon data are scaled by a multiplicative factor of exp(-dEij/(kT)) where dEij is the energy gap between the lower and upper levels while k and T are the Boltzmann constant and electron temperature respectively. In each one of the Upsilon and Downsilon files, the 10-based logarithm of the effective collision strengths are tabulated in a rectangular array where the columns represent 10-based logarithm of electron temperature: logT=2.0(0.025)4.3, while the rows represent kappa: (1K) kappa=1.600(0.025)1.975, 2.0(0.1)2.9, 3.0(0.2)4.8, 5.0(0.5)9.5, 10(1)19, 20(2.5)47.5, 50(5)95, 100(25)175, 200(50)450, 500(100)900, 1000(1000)5000, 10000, 50000, 100000 and 1000000. Some values of the logarithmic scaled Upsilon are replaced by the '99999999' marker because they fall below certain limits and hence they are practically useless. More details about these issues and any other issue can be found in the associated paper (see above). File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file levels.dat 107 5 Levels files/* . 20 Individual effective collision strength files -------------------------------------------------------------------------------- See also: VI/130 : High Accuracy Computed H2D+ Line List - ST1 (Sochi+, 2010) VI/136 : Dielectronic Recombination Lines of C+ - SS1 (Sochi+, 2013) VI/141 : Nebular [OIII] collision strengths - SSB (Storey+, 2014) VI/142 : Hydrogen emission & recombination coefficients - SS2 (Storey+, 2014) Byte-by-byte Description of file: levels.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1 I1 --- Index [1/5] Level index 3- 27 A25 --- Level Level designation 29- 36 F8.2 cm-1 E Experimental energy of level 38- 46 A9 --- File1 File name Index->1 in subdirectory files (1) 48- 56 A9 --- File2 File name Index->2, in subdirectory files (1) 58- 66 A9 --- File3 File name Index->3, in subdirectory files (1) 68- 76 A9 --- File4 File name Index->4, in subdirectory files (1) 78- 86 A9 --- File5 File name Index->5, in subdirectory files (1) -------------------------------------------------------------------------------- Note (1): Upsilon files (excitation from lower to upper state) are named up_mn.dat and Downsilon files i(de-excitation from upper to lower state) are named do_mn.dat, where m=1,2,3,4 and n=2,3,4,5 with m<n. The indices m and n refer respectively to the lower and upper level index. The Upsilon data are scaled by a multiplicative factor of exp(-dEij/(kT)) where dEij is the energy gap between the lower and upper levels while k and T are the Boltzmann constant and electron temperature respectively. -------------------------------------------------------------------------------- Byte-by-byte Description of file: files/* -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 F11.3 --- kappa [1.6/1000000] κ value (2) 15- 26 E12.6 [-] logECS1 ?=99999999 10-based logarithm of effective collision strength, logT=2.000 (100K) (1) 30- 41 E12.6 [-] logECS2 ?=99999999 10-based logarithm of effective collision strength, logT=2.025 (106K) (1) 45- 56 E12.6 [-] logECS3 ?=99999999 10-based logarithm of effective collision strength, logT=2.050 (112K) (1) 60- 71 E12.6 [-] logECS4 ?=99999999 10-based logarithm of effective collision strength, logT=2.075 (119K) (1) 75- 86 E12.6 [-] logECS5 ?=99999999 10-based logarithm of effective collision strength, logT=2.100 (126K) (1) 90- 101 E12.6 [-] logECS6 ?=99999999 10-based logarithm of effective collision strength, logT=2.125 (133K) (1) 105- 116 E12.6 [-] logECS7 ?=99999999 10-based logarithm of effective collision strength, logT=2.150 (141K) (1) 120- 131 E12.6 [-] logECS8 ?=99999999 10-based logarithm of effective collision strength, logT=2.175 (150K) (1) 135- 146 E12.6 [-] logECS9 ?=99999999 10-based logarithm of effective collision strength, logT=2.200 (158K) (1) 150- 161 E12.6 [-] logECS10 ?=99999999 10-based logarithm of effective collision strength, logT=2.225 (168K) (1) 165- 176 E12.6 [-] logECS11 ?=99999999 10-based logarithm of effective collision strength, logT=2.250 (178K) (1) 180- 191 E12.6 [-] logECS12 ?=99999999 10-based logarithm of effective collision strength, logT=2.275 (188K) (1) 195- 206 E12.6 [-] logECS13 ?=99999999 10-based logarithm of effective collision strength, logT=2.300 (200K) (1) 210- 221 E12.6 [-] logECS14 ?=99999999 10-based logarithm of effective collision strength, logT=2.325 (211K) (1) 225- 236 E12.6 [-] logECS15 ?=99999999 10-based logarithm of effective collision strength, logT=2.350 (224K) (1) 240- 251 E12.6 [-] logECS16 ?=99999999 10-based logarithm of effective collision strength, logT=2.275 (188K) (1) 255- 266 E12.6 [-] logECS17 ?=99999999 10-based logarithm of effective collision strength, logT=2.400 (251K) (1) 270- 281 E12.6 [-] logECS18 ?=99999999 10-based logarithm of effective collision strength, logT=2.425 (266K) (1) 285- 296 E12.6 [-] logECS19 ?=99999999 10-based logarithm of effective collision strength, logT=2.450 (282K) (1) 300- 311 E12.6 [-] logECS20 ?=99999999 10-based logarithm of effective collision strength, logT=2.475 (299K) (1) 315- 326 E12.6 [-] logECS21 ?=99999999 10-based logarithm of effective collision strength, logT=2.500 (316K) (1) 330- 341 E12.6 [-] logECS22 ?=99999999 10-based logarithm of effective collision strength, logT=2.525 (335K) (1) 345- 356 E12.6 [-] logECS23 ?=99999999 10-based logarithm of effective collision strength, logT=2.550 (355K) (1) 360- 371 E12.6 [-] logECS24 ?=99999999 10-based logarithm of effective collision strength, logT=2.575 (376K) (1) 375- 386 E12.6 [-] logECS25 ?=99999999 10-based logarithm of effective collision strength, logT=2.600 (398K) (1) 390- 401 E12.6 [-] logECS26 ?=99999999 10-based logarithm of effective collision strength, logT=2.625 (422K) (1) 405- 416 E12.6 [-] logECS27 ?=99999999 10-based logarithm of effective collision strength, logT=2.650 (447K) (1) 420- 431 E12.6 [-] logECS28 ?=99999999 10-based logarithm of effective collision strength, logT=2.675 (473K) (1) 435- 446 E12.6 [-] logECS29 ?=99999999 10-based logarithm of effective collision strength, logT=2.700 (501K) (1) 450- 461 E12.6 [-] logECS30 ?=99999999 10-based logarithm of effective collision strength, logT=2.725 (531K) (1) 465- 476 E12.6 [-] logECS31 ?=99999999 10-based logarithm of effective collision strength, logT=2.750 (562K) (1) 480- 491 E12.6 [-] logECS32 ?=99999999 10-based logarithm of effective collision strength, logT=2.775 (596K) (1) 495- 506 E12.6 [-] logECS33 ?=99999999 10-based logarithm of effective collision strength, logT=2.800 (631K) (1) 510- 521 E12.6 [-] logECS34 ?=99999999 10-based logarithm of effective collision strength, logT=2.825 (668K) (1) 525- 536 E12.6 [-] logECS35 ?=99999999 10-based logarithm of effective collision strength, logT=2.850 (708K) (1) 540- 551 E12.6 [-] logECS36 ?=99999999 10-based logarithm of effective collision strength, logT=2.875 (750K) (1) 555- 566 E12.6 [-] logECS37 ?=99999999 10-based logarithm of effective collision strength, logT=2.900 (794K) (1) 570- 581 E12.6 [-] logECS38 ?=99999999 10-based logarithm of effective collision strength, logT=2.925 (841K) (1) 585- 596 E12.6 [-] logECS39 ?=99999999 10-based logarithm of effective collision strength, logT=2.950 (891K) (1) 600- 611 E12.6 [-] logECS40 ?=99999999 10-based logarithm of effective collision strength, logT=2.975 (944K) (1) 615- 626 E12.6 [-] logECS41 ?=99999999 10-based logarithm of effective collision strength, logT=3.000 (1000K) (1) 630- 641 E12.6 [-] logECS42 ?=99999999 10-based logarithm of effective collision strength, logT=3.025 (1059K) (1) 645- 656 E12.6 [-] logECS43 ?=99999999 10-based logarithm of effective collision strength, logT=3.050 (1122K) (1) 660- 671 E12.6 [-] logECS44 ?=99999999 10-based logarithm of effective collision strength, logT=3.075 (1189K) (1) 675- 686 E12.6 [-] logECS45 ?=99999999 10-based logarithm of effective collision strength, logT=3.100 (1259K) (1) 690- 701 E12.6 [-] logECS46 ?=99999999 10-based logarithm of effective collision strength, logT=3.125 (1334K) (1) 705- 716 E12.6 [-] logECS47 ?=99999999 10-based logarithm of effective collision strength, logT=3.150 (1413K) (1) 720- 731 E12.6 [-] logECS48 ?=99999999 10-based logarithm of effective collision strength, logT=3.175 (1496K) (1) 735- 746 E12.6 [-] logECS49 ?=99999999 10-based logarithm of effective collision strength, logT=3.200 (1585K) (1) 750- 761 E12.6 [-] logECS50 ?=99999999 10-based logarithm of effective collision strength, logT=3.225 (1679K) (1) 765- 776 E12.6 [-] logECS51 ?=99999999 10-based logarithm of effective collision strength, logT=3.250 (1778K) (1) 780- 791 E12.6 [-] logECS52 ?=99999999 10-based logarithm of effective collision strength, logT=3.275 (1884K) (1) 795- 806 E12.6 [-] logECS53 ?=99999999 10-based logarithm of effective collision strength, logT=3.300 (1995K) (1) 810- 821 E12.6 [-] logECS54 ?=99999999 10-based logarithm of effective collision strength, logT=3.325 (2113K) (1) 825- 836 E12.6 [-] logECS55 ?=99999999 10-based logarithm of effective collision strength, logT=3.350 (2239K) (1) 840- 851 E12.6 [-] logECS56 ?=99999999 10-based logarithm of effective collision strength, logT=3.375 (2371K) (1) 855- 866 E12.6 [-] logECS57 ?=99999999 10-based logarithm of effective collision strength, logT=3.400 (2512K) (1) 870- 881 E12.6 [-] logECS58 ?=99999999 10-based logarithm of effective collision strength, logT=3.425 (2661K) (1) 885- 896 E12.6 [-] logECS59 ?=99999999 10-based logarithm of effective collision strength, logT=3.450 (2818K) (1) 900- 911 E12.6 [-] logECS60 ?=99999999 10-based logarithm of effective collision strength, logT=3.475 (2985K) (1) 915- 926 E12.6 [-] logECS61 ?=99999999 10-based logarithm of effective collision strength, logT=3.500 (3162K) (1) 930- 941 E12.6 [-] logECS62 ?=99999999 10-based logarithm of effective collision strength, logT=3.525 (3350K) (1) 945- 956 E12.6 [-] logECS63 ?=99999999 10-based logarithm of effective collision strength, logT=3.550 (3548K) (1) 960- 971 E12.6 [-] logECS64 ?=99999999 10-based logarithm of effective collision strength, logT=3.575 (3758K) (1) 975- 986 E12.6 [-] logECS65 ?=99999999 10-based logarithm of effective collision strength, logT=3.600 (3981K) (1) 990-1001 E12.6 [-] logECS66 10-based logarithm of effective collision strength, logT=3.625 (4217K) 1005-1016 E12.6 [-] logECS67 10-based logarithm of effective collision strength, logT=3.650 (4467K) 1020-1031 E12.6 [-] logECS68 10-based logarithm of effective collision strength, logT=3.675 (4732K) 1035-1046 E12.6 [-] logECS69 10-based logarithm of effective collision strength, logT=3.700 (5012K) 1050-1061 E12.6 [-] logECS70 10-based logarithm of effective collision strength, logT=3.725 (5309K) 1065-1076 E12.6 [-] logECS71 10-based logarithm of effective collision strength, logT=3.750 (5623K) 1080-1091 E12.6 [-] logECS72 10-based logarithm of effective collision strength, logT=3.775 (5957K) 1095-1106 E12.6 [-] logECS73 10-based logarithm of effective collision strength, logT=3.800 (6310K) 1110-1121 E12.6 [-] logECS74 10-based logarithm of effective collision strength, logT=3.825 (6683K) 1125-1136 E12.6 [-] logECS75 10-based logarithm of effective collision strength, logT=3.850 (7079K) 1140-1151 E12.6 [-] logECS76 10-based logarithm of effective collision strength, logT=3.875 (7499K) 1155-1166 E12.6 [-] logECS77 10-based logarithm of effective collision strength, logT=3.900 (7943K) 1170-1181 E12.6 [-] logECS78 10-based logarithm of effective collision strength, logT=3.925 (8414K) 1185-1196 E12.6 [-] logECS79 10-based logarithm of effective collision strength, logT=3.950 (8913K) 1200-1211 E12.6 [-] logECS80 10-based logarithm of effective collision strength, logT=3.975 (9441K) 1215-1226 E12.6 [-] logECS81 10-based logarithm of effective collision strength, logT=4.000 (10000K) 1230-1241 E12.6 [-] logECS82 10-based logarithm of effective collision strength, logT=4.025 (10593K) 1245-1256 E12.6 [-] logECS83 10-based logarithm of effective collision strength, logT=4.050 (11220K) 1260-1271 E12.6 [-] logECS84 10-based logarithm of effective collision strength, logT=4.075 (11885K) 1275-1286 E12.6 [-] logECS85 10-based logarithm of effective collision strength, logT=4.100 (12589K) 1290-1301 E12.6 [-] logECS86 10-based logarithm of effective collision strength, logT=4.125 (13335K) 1305-1316 E12.6 [-] logECS87 10-based logarithm of effective collision strength, logT=4.150 (14125K) 1320-1331 E12.6 [-] logECS88 10-based logarithm of effective collision strength, logT=4.175 (14962K) 1335-1346 E12.6 [-] logECS89 10-based logarithm of effective collision strength, logT=4.200 (15849K) 1350-1361 E12.6 [-] logECS90 10-based logarithm of effective collision strength, logT=4.225 (16788K) 1365-1376 E12.6 [-] logECS91 10-based logarithm of effective collision strength, logT=4.250 (17783K) 1380-1391 E12.6 [-] logECS92 10-based logarithm of effective collision strength, logT=4.275 (18836K) 1395-1406 E12.6 [-] logECS93 10-based logarithm of effective collision strength, logT=4.300 (19953K) -------------------------------------------------------------------------------- Note (1): Some values of the logarithmic scaled Upsilon are replaced by the '99999999' marker because they fall below certain limits and hence they are practically useless. Note (2): κ is the parameter of the electron distribution function: f(E,T,κ) given in Eq.(4) (becomes Maxwllian when κ=∞) -------------------------------------------------------------------------------- Acknowledgements: P.J. Storey: University College London, pjs(at)star.ucl.ac.uk Taha Sochi: University College London, t.sochi(at)ucl.ac.uk References: Berrington K.A., Eissner W.B. and Norrington P.H. (1995) RMATRX1: Belfast atomic R-matrix codes. Computer Physics Communications 92(2): 290-420.
(End) Taha Sochi [University College London], Patricia Vannier [CDS] 04-Mar-2015
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line