VI/96 Evolutionary Sequences (Fagotto+ 1993-96)
Evolutionary Sequences of Stellar Models with New Radiative Opacities.
Z=0.02, Z = 0.0004, Z=0.05, Z = 0.004, Z=0.008, Z=0.10, Z=0.0001.
Bressan A., Fagotto F., Bertelli G., Chiosi C., Girardi L., Nasi E.
<Astron. Astrophys. Suppl. Ser. 100, 647 (1993)>
<Astron. Astrophys. Suppl. Ser. 104, 365 (1994)>
<Astron. Astrophys. Suppl. Ser. 105, 29 (1994)>
<Astron. Astrophys. Suppl. Ser. 105, 39 (1994)>
<Astron. Astrophys. Suppl. Ser. 117, 113 (1996)>
=1993A&AS..100..647B 1993A&AS..100..647B
=1994A&AS..104..365F 1994A&AS..104..365F
=1994A&AS..105...29F 1994A&AS..105...29F
=1994A&AS..105...39F 1994A&AS..105...39F
=1996A&AS..117..113G 1996A&AS..117..113G
ADC_Keywords: Models, evolutionary; HR diagrams; Abundances
Keywords: stars: evolution - Hertzsprung-Russell diagram - stars: imaging -
stars: interiors - stars: abundances
Description:
The tracks cover the mass interval from 0.6 to 120M☉, for 7
different metallicities
The isochrones are derived from the evolutionary tracks listed in
the item above.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
iso.dat 114 45148 Isochrones
table1.dat 155 3599 Evolutionary sequences of low mass stars up to
the tip of the RGB
table2.dat 155 3403 Evolutionary sequences of low mass stars during
the core helium-burning and EAGB phases
table3.dat 155 3056 Evolutionary sequences of intermediate mass stars
up to the TP-AGB and of massive stars (those
with no mass-loss) up to the carbon-ignition
table4.dat 165 2275 Evolutionary sequences for massive stars with
mass loss
table5a.dat 155 319 Evolutionary sequences for intermediate and
massive stars up to the starting of TPAGB or
carbon-ignition with the semiconvective scheme
of mixing (only for Z=0.02)
table5b.dat 165 158 Evolutionary sequences for intermediate and
massive stars up to the starting of TPAGB or
carbon-ignition with the semiconvective scheme
of mixing (only for Z=0.02)
--------------------------------------------------------------------------------
See also:
J/A+AS/106/275 : Theoretical isochrones (Bertelli+ 1994)
http://pleiadi.pd.astro.it : Padova database of stellar evolutionary
tracks and isochrones
Byte-by-byte Description of file: iso.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 F6.4 --- Z Initial metallicity (G1)
11- 16 F6.3 Gyr Age Age
19- 25 F7.4 solMass Mass Initial mass
28- 32 F5.3 [K] LogTe Effective temperature
34- 39 F6.2 mag Mbol Bolometric magnitude
41- 46 F6.2 mag Vmag V magnitude
49- 53 F5.2 mag U-B U-B colour index
56- 60 F5.2 mag B-V B-V colour index
63- 67 F5.2 mag V-R V-R colour index
70- 74 F5.2 mag V-I V-I colour index
77- 81 F5.2 mag V-J V-J colour index
84- 88 F5.2 mag V-H V-H colour index
91- 95 F5.2 mag V-K V-K colour index
97-107 F11.8 --- FLUM Normalized integrated mass function (1)
110-114 F5.2 solMass Mwind Wind mass
--------------------------------------------------------------------------------
Note (1): Double precision variable to allow the inclusion of the
fastest evolutionary phases.
FLUM = ∫Phi(M)dM, with Phi(M)=A*M-alpha
Here, FLUM = M1-alpha/(1-alpha), with alpha=2.35 and A=1,
where M is the initial mass associated to the current mass along
the isochrone.
The difference between any two values of FLUM is proportional to the
number of stars born in the corresponding phases.
When mass loss occurs (transition from RGB to HB and TP-AGB phase),
FLUM is always computed in terms of the initial stellar mass with
the aid of the relationships between the initial and current mass.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table[123].dat table5a.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 F6.4 --- Z Initial metallicity (G1)
8- 13 F6.2 solMass Mass Initial mass
15- 25 E11.5 yr Age Age of models
27- 32 F6.3 [solLum] log(L) Logarithm (base 10) of total luminosity
34- 38 F5.3 [K] log(Teff) Logarithm (base 10) of effective temperature
40- 45 F6.3 [cm/s2] logG Logarithm (base 10) of surface gravity
47- 51 F5.3 [K] logTc Logarithm (base 10) of central temperature
53- 57 F5.3 --- log(rhoc) Logarithm (base 10) of central density
59- 63 F5.3 --- COMP Central abundance (by mass) of hydrogen
or helium
65- 71 E7.2 --- XC Central abundance of 12C
73- 79 E7.2 --- XO Central abundance of 16O
81- 86 F6.4 --- Conv Fractionary mass of the convective core
(inclusive of overshoot)
88- 93 F6.4 --- Qdisc Fractionary mass of the first mesh point where
the chemical composition differs from the
surface value
95-100 F6.3 [solLum] log(LH) Logarithm (base 10) of hydrogen luminosity
102-107 F6.4 --- Q1H Fractionary mass of the inner border of the
hydrogen rich region
109-114 F6.4 --- Q2H Fractionary mass of the outer border of the
H-burning region (1)
116-121 F6.3 [solLum] log(LHe) Logarithm (base 10) of helium luminosity
123-128 F6.4 --- Q1He Fractionary mass of the inner border of the
He-burning region (when greater than zero
He-burning is in a shell) (1)
130-135 F6.4 --- Q2He Fractionary mass of the upper border of the
He-burning region (1)
137-141 F5.3 [solLum] log(LC) Logarithm (base 10) of carbon luminosity
143-148 F6.3 [solLum] log(Lnu) Logarithm (base 10) of neutrinos luminosity
(absolute value)
150-155 F6.4 --- QTmax Fractionary mass of the point where the
temperature attains the maximum value
--------------------------------------------------------------------------------
Note (1): The boundary is taken where the nuclear energy generation
rate becomes greater than a suitable value
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table4.dat table5b.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 6 F6.4 --- Z Initial metallicity (G1)
8- 13 F6.2 solMass IMass Initial mass
15- 25 E11.5 yr Age Age of models
27- 32 F6.2 solMass Mass Current value of the mass
34- 38 F5.3 [solLum] log(L) Logarithm (base 10) of total luminosity
40- 44 F5.3 [K] log(Teff) Logarithm (base 10) of effective
temperature
46- 51 F6.3 [cm/s2] logG Logarithm (base 10) of surface gravity
53- 57 F5.3 [K] logTc Logarithm (base 10) of central temperature
59- 63 F5.3 --- log(rhoc) Logarithm (base 10) of the central density
65- 69 F5.3 --- COMP Central abundance (by mass) of hydrogen or
helium
71- 77 E7.2 --- XC Central abundance of 12C
79- 85 E7.2 --- XO Central abundance of 16O
87- 92 F6.4 --- Conv Fractionary mass of the convective core
(inclusive of overshoot)
94- 99 F6.4 --- Qdisc Fractionary mass of the first mesh point
where the chemical composition differs
from the surface value
101-105 F5.3 [solLum] log(LH) Logarithm (base 10) of hydrogen luminosity
107-111 F5.3 --- Q1H Fractionary mass of the inner border of
the hydrogen rich region
113-117 F5.3 [solLum] log(LHe) Logarithm (base 10) of helium luminosity
119-125 F7.3 [solMass/yr] log(dM/dt) Logarithm (base 10) of the absolute value
of the mass loss rate
127-133 E7.2 --- Xsur Surface abundance (by mass) of 1H
135-141 E7.2 --- Ysur Surface abundance (by mass) of 4He
143-149 E7.2 --- XCsur Surface abundance (by mass) of 12C
151-157 E7.2 --- XNsur Surface abundance (by mass) of 14N
159-165 E7.2 --- XOsur Surface abundance (by mass) of 16O
--------------------------------------------------------------------------------
Global notes:
Note (G1): Initial compositions:
Z=0.0001, Y=0.230, OPAL opacity, Paper 6, 1996A&AS..117..113G 1996A&AS..117..113G
Z=0.0004, Y=0.230, OPAL opacity, Paper 3, 1994A&AS..104..365F 1994A&AS..104..365F
Z=0.0040, Y=0.240, OPAL opacity, Paper 4, 1994A&AS..105...29F 1994A&AS..105...29F
Z=0.0080, Y=0.250, OPAL opacity, Paper 4, 1994A&AS..105...29F 1994A&AS..105...29F
Z=0.0200, Y=0.280, OPAL opacity, Paper 2, 1993A&AS..100..647B 1993A&AS..100..647B
Z=0.0500, Y=0.352, OPAL opacity, Paper 3, 1994A&AS..104..365F 1994A&AS..104..365F
Z=0.1000, Y=0.475, LAOL opacity, Paper 5, 1994A&AS..105...39F 1994A&AS..105...39F
History:
The evolution sequences originally related to the 5 references
were merged into a single catalog.
Acknowledgements: Leo Girardi
References:
Alongi et al., Paper I 1993A&AS...97..851A 1993A&AS...97..851A
Bressan et al., Paper II 1993A&AS..100..647B 1993A&AS..100..647B
Fagotto et al., Paper III 1994A&AS..104..365F 1994A&AS..104..365F
Fagotto et al., Paper IV 1994A&AS..105...29F 1994A&AS..105...29F
Fagotto et al., Paper V 1994A&AS..105...39F 1994A&AS..105...39F
Girardi et al., Paper IV 1996A&AS..117..113G 1996A&AS..117..113G
(End) Patricia Bauer [CDS] 28-Jul-2001