VI/96               Evolutionary Sequences                   (Fagotto+ 1993-96)

Evolutionary Sequences of Stellar Models with New Radiative Opacities. Z=0.02, Z = 0.0004, Z=0.05, Z = 0.004, Z=0.008, Z=0.10, Z=0.0001. Bressan A., Fagotto F., Bertelli G., Chiosi C., Girardi L., Nasi E. <Astron. Astrophys. Suppl. Ser. 100, 647 (1993)> <Astron. Astrophys. Suppl. Ser. 104, 365 (1994)> <Astron. Astrophys. Suppl. Ser. 105, 29 (1994)> <Astron. Astrophys. Suppl. Ser. 105, 39 (1994)> <Astron. Astrophys. Suppl. Ser. 117, 113 (1996)> =1993A&AS..100..647B 1993A&AS..100..647B =1994A&AS..104..365F 1994A&AS..104..365F =1994A&AS..105...29F 1994A&AS..105...29F =1994A&AS..105...39F 1994A&AS..105...39F =1996A&AS..117..113G 1996A&AS..117..113G
ADC_Keywords: Models, evolutionary; HR diagrams; Abundances Keywords: stars: evolution - Hertzsprung-Russell diagram - stars: imaging - stars: interiors - stars: abundances Description: The tracks cover the mass interval from 0.6 to 120M, for 7 different metallicities The isochrones are derived from the evolutionary tracks listed in the item above. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file iso.dat 114 45148 Isochrones table1.dat 155 3599 Evolutionary sequences of low mass stars up to the tip of the RGB table2.dat 155 3403 Evolutionary sequences of low mass stars during the core helium-burning and EAGB phases table3.dat 155 3056 Evolutionary sequences of intermediate mass stars up to the TP-AGB and of massive stars (those with no mass-loss) up to the carbon-ignition table4.dat 165 2275 Evolutionary sequences for massive stars with mass loss table5a.dat 155 319 Evolutionary sequences for intermediate and massive stars up to the starting of TPAGB or carbon-ignition with the semiconvective scheme of mixing (only for Z=0.02) table5b.dat 165 158 Evolutionary sequences for intermediate and massive stars up to the starting of TPAGB or carbon-ignition with the semiconvective scheme of mixing (only for Z=0.02) -------------------------------------------------------------------------------- See also: J/A+AS/106/275 : Theoretical isochrones (Bertelli+ 1994) http://pleiadi.pd.astro.it : Padova database of stellar evolutionary tracks and isochrones Byte-by-byte Description of file: iso.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 F6.4 --- Z Initial metallicity (G1) 11- 16 F6.3 Gyr Age Age 19- 25 F7.4 solMass Mass Initial mass 28- 32 F5.3 [K] LogTe Effective temperature 34- 39 F6.2 mag Mbol Bolometric magnitude 41- 46 F6.2 mag Vmag V magnitude 49- 53 F5.2 mag U-B U-B colour index 56- 60 F5.2 mag B-V B-V colour index 63- 67 F5.2 mag V-R V-R colour index 70- 74 F5.2 mag V-I V-I colour index 77- 81 F5.2 mag V-J V-J colour index 84- 88 F5.2 mag V-H V-H colour index 91- 95 F5.2 mag V-K V-K colour index 97-107 F11.8 --- FLUM Normalized integrated mass function (1) 110-114 F5.2 solMass Mwind Wind mass -------------------------------------------------------------------------------- Note (1): Double precision variable to allow the inclusion of the fastest evolutionary phases. FLUM = ∫Phi(M)dM, with Phi(M)=A*M-alpha Here, FLUM = M1-alpha/(1-alpha), with alpha=2.35 and A=1, where M is the initial mass associated to the current mass along the isochrone. The difference between any two values of FLUM is proportional to the number of stars born in the corresponding phases. When mass loss occurs (transition from RGB to HB and TP-AGB phase), FLUM is always computed in terms of the initial stellar mass with the aid of the relationships between the initial and current mass. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table[123].dat table5a.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 F6.4 --- Z Initial metallicity (G1) 8- 13 F6.2 solMass Mass Initial mass 15- 25 E11.5 yr Age Age of models 27- 32 F6.3 [solLum] log(L) Logarithm (base 10) of total luminosity 34- 38 F5.3 [K] log(Teff) Logarithm (base 10) of effective temperature 40- 45 F6.3 [cm/s2] logG Logarithm (base 10) of surface gravity 47- 51 F5.3 [K] logTc Logarithm (base 10) of central temperature 53- 57 F5.3 --- log(rhoc) Logarithm (base 10) of central density 59- 63 F5.3 --- COMP Central abundance (by mass) of hydrogen or helium 65- 71 E7.2 --- XC Central abundance of 12C 73- 79 E7.2 --- XO Central abundance of 16O 81- 86 F6.4 --- Conv Fractionary mass of the convective core (inclusive of overshoot) 88- 93 F6.4 --- Qdisc Fractionary mass of the first mesh point where the chemical composition differs from the surface value 95-100 F6.3 [solLum] log(LH) Logarithm (base 10) of hydrogen luminosity 102-107 F6.4 --- Q1H Fractionary mass of the inner border of the hydrogen rich region 109-114 F6.4 --- Q2H Fractionary mass of the outer border of the H-burning region (1) 116-121 F6.3 [solLum] log(LHe) Logarithm (base 10) of helium luminosity 123-128 F6.4 --- Q1He Fractionary mass of the inner border of the He-burning region (when greater than zero He-burning is in a shell) (1) 130-135 F6.4 --- Q2He Fractionary mass of the upper border of the He-burning region (1) 137-141 F5.3 [solLum] log(LC) Logarithm (base 10) of carbon luminosity 143-148 F6.3 [solLum] log(Lnu) Logarithm (base 10) of neutrinos luminosity (absolute value) 150-155 F6.4 --- QTmax Fractionary mass of the point where the temperature attains the maximum value -------------------------------------------------------------------------------- Note (1): The boundary is taken where the nuclear energy generation rate becomes greater than a suitable value -------------------------------------------------------------------------------- Byte-by-byte Description of file: table4.dat table5b.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 F6.4 --- Z Initial metallicity (G1) 8- 13 F6.2 solMass IMass Initial mass 15- 25 E11.5 yr Age Age of models 27- 32 F6.2 solMass Mass Current value of the mass 34- 38 F5.3 [solLum] log(L) Logarithm (base 10) of total luminosity 40- 44 F5.3 [K] log(Teff) Logarithm (base 10) of effective temperature 46- 51 F6.3 [cm/s2] logG Logarithm (base 10) of surface gravity 53- 57 F5.3 [K] logTc Logarithm (base 10) of central temperature 59- 63 F5.3 --- log(rhoc) Logarithm (base 10) of the central density 65- 69 F5.3 --- COMP Central abundance (by mass) of hydrogen or helium 71- 77 E7.2 --- XC Central abundance of 12C 79- 85 E7.2 --- XO Central abundance of 16O 87- 92 F6.4 --- Conv Fractionary mass of the convective core (inclusive of overshoot) 94- 99 F6.4 --- Qdisc Fractionary mass of the first mesh point where the chemical composition differs from the surface value 101-105 F5.3 [solLum] log(LH) Logarithm (base 10) of hydrogen luminosity 107-111 F5.3 --- Q1H Fractionary mass of the inner border of the hydrogen rich region 113-117 F5.3 [solLum] log(LHe) Logarithm (base 10) of helium luminosity 119-125 F7.3 [solMass/yr] log(dM/dt) Logarithm (base 10) of the absolute value of the mass loss rate 127-133 E7.2 --- Xsur Surface abundance (by mass) of 1H 135-141 E7.2 --- Ysur Surface abundance (by mass) of 4He 143-149 E7.2 --- XCsur Surface abundance (by mass) of 12C 151-157 E7.2 --- XNsur Surface abundance (by mass) of 14N 159-165 E7.2 --- XOsur Surface abundance (by mass) of 16O -------------------------------------------------------------------------------- Global notes: Note (G1): Initial compositions: Z=0.0001, Y=0.230, OPAL opacity, Paper 6, 1996A&AS..117..113G 1996A&AS..117..113G Z=0.0004, Y=0.230, OPAL opacity, Paper 3, 1994A&AS..104..365F 1994A&AS..104..365F Z=0.0040, Y=0.240, OPAL opacity, Paper 4, 1994A&AS..105...29F 1994A&AS..105...29F Z=0.0080, Y=0.250, OPAL opacity, Paper 4, 1994A&AS..105...29F 1994A&AS..105...29F Z=0.0200, Y=0.280, OPAL opacity, Paper 2, 1993A&AS..100..647B 1993A&AS..100..647B Z=0.0500, Y=0.352, OPAL opacity, Paper 3, 1994A&AS..104..365F 1994A&AS..104..365F Z=0.1000, Y=0.475, LAOL opacity, Paper 5, 1994A&AS..105...39F 1994A&AS..105...39F History: The evolution sequences originally related to the 5 references were merged into a single catalog. Acknowledgements: Leo Girardi References: Alongi et al., Paper I 1993A&AS...97..851A 1993A&AS...97..851A Bressan et al., Paper II 1993A&AS..100..647B 1993A&AS..100..647B Fagotto et al., Paper III 1994A&AS..104..365F 1994A&AS..104..365F Fagotto et al., Paper IV 1994A&AS..105...29F 1994A&AS..105...29F Fagotto et al., Paper V 1994A&AS..105...39F 1994A&AS..105...39F Girardi et al., Paper IV 1996A&AS..117..113G 1996A&AS..117..113G
(End) Patricia Bauer [CDS] 28-Jul-2001
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line