J/A+A/568/A91     Gas opacity in circumstellar environments     (Malygin+, 2014)

Mean gas opacity for circumstellar environments and equilibrium temperature degeneracy. Malygin M.G., Kuiper R., Klahr H., Dullemond C.P., Henning T. <Astron. Astrophys. 568, A91 (2014)> =2014A&A...568A..91M 2014A&A...568A..91M
ADC_Keywords: Interstellar medium ; Models Keywords: opacity - radiative transfer - methods: numerical Abstract: In a molecular cloud dust opacity typically dominates over gas opacity, yet in the vicinities of forming stars dust is depleted, and gas is the sole provider of opacity. In the optically thin circumstellar environments the radiation temperature cannot be assumed to be equal to the gas temperature, hence the two-temperature Planck means are necessary to calculate the radiative equilibrium. By using the two-temperature mean opacity one does obtain the proper equilibrium gas temperature in a circumstellar environment, which is in a chemical equilibrium. A careful consideration of a radiative transfer problem reveals that the equilibrium temperature solution can be degenerate in an optically thin gaseous environment. We compute mean gas opacities based on the publicly available code DFSYNTHE by Kurucz and Castelli. We performed the calculations assuming local thermodynamic equilibrium and an ideal gas equation of state. The values were derived by direct integration of the high-resolution opacity spectrum. Description: The tables contain frequency averaged gas opacity for a wide range of gas temperatures and pressures as well as for three different metallicities. The first table contains Rosseland and Planck means. The second table consists two-temperature Planck means, which can be used when the radiation temperature is different from the gas temperature, but a chemical equilibrium can be assumed. To be used in radiative transfer modelling. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 59 35532 Rosseland and Planck means for 94 temperatures, 126 pressures and 3 metallicities table2.dat 52 355320 Two-temperature Planck means for 94 temperatures 126 pressures, 3 metallicities and 10 radiation temperatures -------------------------------------------------------------------------------- Byte-by-byte Description of file: table1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2- 5 F4.1 [Sun] [Me/H] [-0.3/0.3] Metallicity (-0.3, 0.0, +0.3 ) (G1) 7- 13 I7 K Tgas [700/1e06] Gas temperature Tgas 15- 23 E9.4 dPa Pgas [1e-09/7.2e+08] Gas pressure Pgas (dyn/cm2) 25- 33 E9.4 g/cm3 rho Gas density ρ 35- 46 E12.6 cm2/g kR Rosseland mean opacity κR 48- 59 E12.6 cm2/g kP Planck mean opacity κP -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 2- 5 F4.1 [Sun] [Me/H] [-0.3/0.3] Metallicity (-0.3,0.0,+0.3) (G1) 7- 11 I5 K Trad [3000/50000] Radiation temperature Trad 13- 19 I7 K Tgas [700/1e+06] Gas temperature Tgas 21- 29 E9.4 dPa Pgas [1e-09/7.2e+08] Gas pressure Pgas (dyn/cm2) 31- 39 E9.4 g/cm3 rho Gas density ρ 41- 52 E12.6 cm2/g kP Two-temperature Planck mean opacity κP(Trad,Tgas) -------------------------------------------------------------------------------- Global notes: Note (G1): metallicity [Me/H] is a logarithm base 10 of the multiplicative factor applied to atomic abundances of all the species but H and He. The reference abundances (i.e. for [Me/H]=+0.0) are from Grevesse & Sauval (1998SSRv...85..161G 1998SSRv...85..161G) -------------------------------------------------------------------------------- Acknowledgements: Mykola Malygin, malygin(at)mpia.de References: Grevesse & Sauval, 1998SSRv...85..161G 1998SSRv...85..161G, Standard Solar Composition History: * 26-Aug-2014 : on-line data * 27-Aug-2014 : tables 1 and 2 corrected (from author)
(End) Mykola Malygin [MPIA, Heidelberg], Patricia Vannier [CDS] 28-Jul-2014
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line