J/A+A/572/A90 Herschel-VVDS-CFHTLS-D1 detections (Lemaux+, 2014)
Hidden starbursts and active galactic nuclei at 0<z<4 from the
Herschel-VVDS-CFHTLS-D1 field: Inferences on coevolution and feedback.
Lemaux B.C., Le Floc'h E., Le Fevre O., Ilbert O., Tresse L., Lubin L.M.,
Zamorani G., Gal R.R., Ciliegi P., Cassata P., Kocevski D.D., McGrath E.J.,
Bardelli S., Zucca E., Squires G.K.
<Astron. Astrophys. 572, A90 (2014)>
=2014A&A...572A..90L 2014A&A...572A..90L
ADC_Keywords: Galaxies, IR ; Galaxies, optical ; Magnitudes, absolute ;
Magnitudes ; Photometry ; Redshifts
Keywords: galaxies: active - galaxies: evolution - galaxies: high-redshift -
galaxies: starburst - techniques: spectroscopic -
submillimeter: galaxies
Abstract:
We investigate of the properties of ∼2000 Herschel/SPIRE
far-infrared-selected galaxies from 0<z<4 in the CFHTLS-D1 field.
Using a combination of extensive spectroscopy from the VVDS and ORELSE
surveys, deep multiwavelength imaging from CFHT, VLA, Spitzer,
XMM-Newton, and Herschel, and well-calibrated spectral energy
distribution fitting, Herschel-bright galaxies are compared to
optically-selected galaxies at a variety of redshifts.
Herschel-selected galaxies are observed to span a range of stellar
masses, colors, and absolute magnitudes equivalent to galaxies
undetected in SPIRE. Though many Herschel galaxies appear to be in
transition, such galaxies are largely consistent with normal
star-forming galaxies when rest-frame colors are utilized. The nature
of the star-forming "main sequence" is studied and we warn against
adopting this framework unless the main sequence is determined
precisely. Herschel galaxies at different total infrared luminosities
(LTIR) are compared. Bluer optical colors, larger nebular
extinctions, and larger contributions from younger stellar populations
are observed for galaxies with larger LTIR, suggesting that
low-LTIR galaxies are undergoing rejuvenated starbursts while
galaxies with higher LTIR are forming a larger percentage of their
stellar mass. A variety of methods are used to select powerful active
galactic nuclei (AGN). Galaxies hosting all types of AGN are observed
to be undergoing starbursts more commonly and vigorously than a
matched sample of galaxies without powerful AGN and, additionally, the
fraction of galaxies with an AGN increases with increasing SFR at all
redshifts. At all redshifts (0<z<4) the most prodigious star-forming
galaxies are found to contain the highest fraction of powerful AGN.
For redshift bins that allow a comparison (z>0.5), the highest LTIR
galaxies in a given redshift bin are unobserved by SPIRE at
subsequently lower redshifts, a trend linked to downsizing. In
conjunction with other results, this evidence is used to argue for
prevalent AGN-driven quenching in starburst galaxies across cosmic
time.
Description:
Parameters for all 11012 objects detected in the Herschel/SPIRE
imaging regardless of significance. The parameters given in this file
are SPIRE identification number, SPIRE, optical, X-ray, and radio
equatorial coordinates, optical/NIR/MIR observed magnitudes, SPIRE
flux densities and associated errors, k-corrected X-ray luminosities,
k-corrected radio power densities, radio spectral slope, photometric
and spectroscopic redshift (when available), SFRs, stellar masses,
luminosity-weighted stellar ages, stellar continuum dust extinction,
absolute magnitudes, and a variety of different flags used to keep
track of various populations or selections. Magnitudes in the
u*g'r'i'z'JHK_s bands are MAG_AUTO. Spitzer magnitudes are corrected
aperture magnitudes. All magnitudes are in AB and corrected for
Galactic extinction. Errors on magnitudes available on request. SFRs
come from the SED fitting process, not from the TIR luminosity. Both
SFRs and stellar masses are estimated assuming a Chabrier
(2003PASP..115..763C 2003PASP..115..763C) initial mass function. In all cases where a
source had a reliable spectroscopic redshift (flags = 2,3,4 or some
iteration thereof from VVDS or flags = -1,3,4 from ORELSE) or a
reliable photometric redshift (i'<25.5), the best available redshift
was used to fix the redshift for the TIR portion of the spectral
energy distribution fitting (reliable spectroscopic redshifts were
preferred when available). All logarithms are base 10.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
vvdsir.dat 569 11012 All Herschel/SPIRE detections in the CFHTLS-D1 field
--------------------------------------------------------------------------------
See also:
III/250 : The VIMOS VLT deep survey (VVDS-DEEP) (Le Fevre+ 2005)
III/269 : VIMOS VLT Deep Survey (VVDS) (Le Fevre+, 2013)
II/317 : The CFHTLS Survey (T0007 release) (Hudelot+ 2012)
VI/139 : Herschel Observation Log (Herschel Science Centre, 2013)
J/ApJ/761/140 : Spectroscopy of Herschel-SPIRE galaxies (Casey+, 2012)
J/MNRAS/417/2239 : SPIRE (f250um>17.4mJy) GOODS-N galaxies (Symeonidis+, 2011)
J/A+A/457/79 : VIMOS VLT Deep Survey: faint type-1 AGN sample (Gavignaud+ 2006)
J/A+A/495/53 : Physical properties of VVDS galaxies (Lamareille+, 2009)
Byte-by-byte Description of file: vvdsir.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 5 I5 ---- SPIRE [95/19052] Internal VVDS SPIRE ID
7- 15 F9.6 deg RAdeg Right ascension in SPIRE (J2000.0)
17- 26 F10.7 deg DEdeg Declination in SPIRE (J2000.0)
28 I1 ---- f24 [0/1] 24um parent? (yes=1, no=0) (2)
30- 38 F9.4 deg RAOdeg ?=-99 Optical Right ascension (J2000.0) (1)
40- 49 F10.5 deg DEOdeg ?=-99 Optical Declination (J2000.0) (1)
51- 62 F12.7 ---- Bz [0/10]?=-99 Best redshift, photometric or
spectroscopic
64- 70 A7 ---- n_Bz Source of best redshift (3)
72- 75 I4 ---- q_Bz [-10/219]?=-100 Quality flag for VVDS
spectroscopic redshift, 4/14/24=best (1)
77- 85 F9.4 ---- zph [0/4]?=-99 Photometric redshift (1)
87- 95 F9.4 mag umag ?=-99 CFHT/Megacam u*-band apparent
magnitude (1)
97-105 F9.4 mag gmag ?=-99 CFHT/Megacam g'-band apparent
magnitude (1)
107-115 F9.4 mag rmag ?=-99 CFHT/Megacam r'-band apparent
magnitude (1)
117-125 F9.4 mag imag ?=-99 CFHT/Megacam i'-band apparent
magnitude (1)
127-135 F9.4 mag zmag ?=-99 CFHT/Megacam z'-band apparent
magnitude (1)
137-145 F9.4 mag Jmag ?=-99 CFHT/WIRCam J-band apparent
magnitude (1)
147-155 F9.4 mag Hmag ?=-99 CFHT/WIRCam H-band apparent
magnitude (1)
157-165 F9.4 mag Kmag ?=-99 CFHT/WIRCam Ks-band apparent
magnitude (1)
167-173 F7.2 mag IRAC1 ?=-99 Spitzer/IRAC 3.6um-band apparent
magnitude (1)
175-181 F7.2 mag IRAC2 ?=-99 Spitzer/IRAC 4.5um-band apparent
magnitude (1)
183-189 F7.2 mag IRAC3 ?=-99 Spitzer/IRAC 5.8um-band apparent
magnitude (1)
191-197 F7.2 mag IRAC4 ?=-99 Spitzer/IRAC 8.0um-band apparent
magnitude (1)
199-207 F9.4 mag MIPS1 ?=-99 Spitzer/MIPS 24um-band apparent
magnitude (1)
209-213 F5.1 mJy F250 ?=-1 Herschel/SPIRE 250um band flux density
215-218 F4.1 mJy e_F250 ?=-1 Error on F250
220-224 F5.1 mJy F350 ?=-1 Herschel/SPIRE 350um band flux density
226-231 F6.1 mJy e_F350 ?=-1 Error on F350
233-238 F6.1 mJy F500 ?=-1 Herschel/SPIRE 500um band flux density
240-243 F4.1 mJy e_F500 ?=-1 Error on F500
245-253 F9.4 [Lsun] logLir ?=-99 Total infrared luminosity (1)
256-264 F9.4 [Lsun] E_logLir ?=-99 1-σ positive error on logLir (1)
266-274 F9.4 [Lsun] e_logLir ?=-99 1-σ negative error on logLir (1)
277-284 F8.3 mag FUVMAG ?=-99 Galex FUV band restframe absolute
magnitude (1)
286-293 F8.3 mag NUVMAG ?=-99 Galex NUV band restframe absolute
magnitude (1)
295-302 F8.3 mag uMAG ?=-99 CFHT/Megacam u*-band restframe
absolute magnitude (1)
304-311 F8.3 mag gMAG ?=-99 CFHT/Megacam u*-band restframe
absolute magnitude (1)
313-320 F8.3 mag rMAG ?=-99 CFHT/Megacam u*-band restframe
absolute magnitude (1)
322-329 F8.3 mag iMAG ?=-99 CFHT/Megacam u*-band restframe
absolute magnitude (1)
332-339 F8.3 mag zMAG ?=-99 CFHT/Megacam u*-band restframe
absolute magnitude (1)
341-348 F8.3 mag JMAG ?=-99 CFHT/WIRCam J-band restframe
absolute magnitude (1)
350-357 F8.3 mag HMAG ?=-99 CFHT/WIRCam H-band restframe
absolute magnitude (1)
359-366 F8.3 mag KMAG ?=-99 CFHT/WIRCam Ks-band restframe
absolute magnitude (1)
368-377 F10.5 [Msun] logM* ?=-99 Stellar mass (1)
379-392 F14.9 [Msun] E_logM* ?=-99 1-σ positive error on logM* (1)
394-407 E14.9 [Msun] e_logM* ?=-99 1-σ negative error on logM* (1)
409-421 F13.8 [Msun/yr] logSFR ?=-99 Star formation rate (1)
423-436 E14.9 [Msun/yr] E_logSFR ?=-99 1-σ positive error on logSFR (1)
438-451 E14.9 [Msun/yr] e_logSFR ?=-99 1-σ negative error on logSFR (1)
453-462 F10.5 [yr] logAge ?=-99 Luminosity-weighted mean
stellar age (1)
464-469 F6.1 mag E(B-V) ?=-99 Estimated dust extinction of the
stellar continuum (1)
471-479 F9.4 deg RAXdeg ?=-99 Right ascension in XMM/Newton
(J2000.0) (1)
481-490 F10.5 deg DEXdeg ?=-99 Declination in XMM/Newton
(J2000.0) (1)
492-500 F9.4 [10-7W] logLXs ?=-99 Restframe luminosity in the XMM/EPIC
[0.5-2]keV band (1)
501 A1 --- n_logLXs [I] I for ∞
502-510 F9.4 [10-7W] logLXh ?=-99 Restframe luminosity in the XMM/EPIC
[2-10]keV band (1)
511 A1 --- n_logLXh [I] I for ∞
512-520 F9.4 [10-7W] logLX ?=-99 Restframe bolometric X-ray
luminosity (1)
522-530 F9.4 deg RArdeg ?=-99 Right ascension in VLA/B-array
(J2000.0) (1)
532-541 F10.5 deg DErdeg ?=-99 Declination in VLA/B-array
(J2000.0) (1)
543-551 F9.4 [W/Hz] logP0.6 ?=-99 Restframe power density in the
GMRT 0.6GHz channel (1)
552 A1 --- n_logP0.6 [I] I for ∞
553-561 F9.4 [W/Hz] logP1.4 ?=-99 Restframe power density in the
VLA 1.4GHz channel (1)
562 A1 --- n_logP1.4 [I] I for ∞
563-567 F5.2 ---- alpha [-2.3/1.1]?=0 Radio spectral slope α
(Pν∝ν-α)
569 I1 ---- IRAGN [0/1]? Near-infrared-selected AGN?
(yes=1, no=0)
--------------------------------------------------------------------------------
Note (1): A value of -9, -99, or -100 indicates that the quantity was not
measured/computed or there was no detection in a particular band/wavelength
Note (2): An entry of 1 in f24 (parentflag) means the SPIRE source was
extracted at the location of a 24um-detected object. An entry of 0 means the
SPIRE source was extracted on the SPIRE residual map after the former sources
were removed. An entry of 0 does not preclude the SPIRE source from having a
24um flux as the probabilistic matching can match back to a 24um-bright source.
Note (3): An entry of "Nomatch" in this column means the source was not matched
or had no reliable redshift. An entry of "photo" means that the matched source
had a reliable photometric redshift but no reliable spectroscopic redshift.
An entry of "VVDS" or "ORELSE" means the matched source had a reliable
spectroscopic redshift.
--------------------------------------------------------------------------------
Acknowledgements:
Brian C. Lemaux, brian.lemaux(at)lam.fr
(End) Brian C. Lemaux [LAM, Marseille], Patricia Vannier [CDS] 27-Oct-2014