J/A+A/574/A29     Tc IV, Tc V and Tc VI oscillator strengths    (Werner+, 2015)

The prospective search for highly ionized technetium in hot (pre-) white dwarfs. Werner K., Rauch T., Kucas S., Kruk J.W. <Astron. Astrophys. 574, A29 (2015)> =2015A&A...574A..29W 2015A&A...574A..29W
ADC_Keywords: Atomic physics Keywords: stars: abundances - stars: evolution - stars: AGB and post-AGB - white dwarfs - atomic data - line: identification Abstract: The discovery of technetium (Tc) in the atmospheres of red giants by Merrill (1952ApJ...116...21M 1952ApJ...116...21M) constituted convincing proof that s-process nucleosynthesis is indeed occurring in evolved stars. In principle, Tc should still be present in the atmospheres of hot post-AGB stars and (pre-) white dwarfs although, due to radioactive decay, it should be present in decreasing quantities along post-AGB evolution. The recent discovery of a large number of trans-iron group elements in hot white dwarfs with atomic numbers in the range A=30-56 (Zn to Ba) raises the prospect that Tc (A=43) may also be detected. However, this is currently not feasible because no atomic data exist for ionization stages beyond TcII. As an initial step, we calculated atomic energy levels and oscillator strengths of Tc IV-VI and used these data to compute non-local thermodynamic equilibrium (NLTE) model atmospheres to estimate at which minimum abundance level Tc could be detected. We show that Tc lines can be found in ultraviolet spectra of hot white dwarfs provided Tc is as abundant as other detected trans-Fe elements. We find that radiative levitation can keep Tc in large, easily detectable quantities in the atmosphere. A direct identification of Tc lines is still not feasible because wavelength positions cannot be computed with necessary precision. Laboratory measurements are necessary to overcome this problem. Our results suggest that such efforts are beneficial to the astrophysical community. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file table1.dat 90 4698 Tc IV energy levels table2.dat 77 496241 Tc IV line transitions table3.dat 90 1932 Tc V energy levels table4.dat 77 344498 Tc V line transitions table5.dat 90 555 Tc VI energy levels table6.dat 77 27107 Tc VI line transitions -------------------------------------------------------------------------------- See also: J/A+A/546/A55 : Ge V and Ge VI oscillator strengths (Rauch+, 2012) J/A+A/564/A41 : ZnIV and ZnV oscillator strengths (Rauch+, 2014) J/A+A/566/A10 : Ba V, Ba VI, and Ba VII oscillator strengths (Rauch+, 2014) Byte-by-byte Description of file: table1.dat table3.dat table5.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 6 I6 --- Index [1/4698] Level index 12- 19 F8.1 cm-1 E Level energy 21 A1 --- p [o/e] Level parity (o for odd, e for even) 23- 26 F4.1 --- J [0/12] Angular momentum quantum number J 30- 32 I3 % P1 [6/100] First percentage (1) 35- 52 A18 --- Conf1 Configuration of the first percentage 56- 58 A3 --- term1 Term of the first percentage 63- 64 I2 % P2 [1/50]? Second percentage (2) 67- 84 A18 --- Conf2 Configuration of the second percentage 88- 90 A3 --- term2 Term of the second percentage -------------------------------------------------------------------------------- Note (1): First percentage is the largest component from the eigenvector for the level Note (2): Second percentage is the largest of the remaining components from the same eigenvector; it is ommitted if less than 1%. -------------------------------------------------------------------------------- Byte-by-byte Description of file: table2.dat table4.dat table6.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 10 F10.2 0.1nm lambda [150/500000] Wavelength λ (Å) 16- 21 I6 cm-1 E0 Lower level energy 23 A1 --- p0 [o/e] Lower level parity 26- 28 F3.1 --- J0 [0/12] Lower level quantum number J 31- 34 I4 --- i0 [1/4698] Lower level index 40- 45 I6 cm-1 E1 Upper level energy 47 A1 --- p1 [o/e] Upper level parity 49- 52 F4.1 --- J1 [0/12] Upper level quantum number J 55- 58 I4 --- i1 [1/4698] Upper level index 62- 66 F5.2 [-] loggf Calculated HFR oscillator strength value (1) 70- 77 E8.2 s-1 gA Transition probability value (2) -------------------------------------------------------------------------------- Note (1): g = statistical weight of the lower level, f = oscillator strength. Note (2): g = statistical weight of the upper level, A = transition probability. -------------------------------------------------------------------------------- Acknowledgements: Thomas Rauch, rauch(at)astro.uni-tuebingen.de
(End) Patricia Vannier [CDS] 19-Jan-2015
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line