J/A+A/578/A65 Highly rotationally excited HF collisional quenching (Yang+, 2015)
Collisional quenching of highly rotationally excited HF.
Yang B., Walker K.M., Forrey R.C., Stancil P.C., Balakrishnan N.
<Astron. Astrophys. 578, A65 (2015)>
=2015A&A...578A..65Y 2015A&A...578A..65Y
ADC_Keywords: Atomic physics
Keywords: molecular processes - molecular data - ISM: molecules
Abstract:
Collisional excitation rate coefficients play an important role in the
dynamics of energy transfer in the interstellar medium. In particular,
accurate rotational excitation rates are needed to interpret microwave
and infrared observations of the interstellar gas for nonlocal
thermodynamic equilibrium line formation.
Theoretical cross sections and rate coefficients for collisional
deexcitation of rotationally excited HF in the vibrational ground
state are reported.
The quantum-mechanical close-coupling approach implemented in the
nonreactive scattering code MOLSCAT was applied in the cross section
and rate coefficient calculations on an accurate 2D HF-He potential
energy surface. Estimates of rate coefficients for H and H2
colliders were obtained from the HF-He collisional data with a
reduced-potential scaling approach.
Description:
The state-to-state rotational quenching rate coefficients for HF due
to He with initial rotational levels up to j=20 were presented for
temperatures between 1 and 3000K.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
aa_hehf.dat 281 210 Rate coefficients
--------------------------------------------------------------------------------
Byte-by-byte Description of file: aa_hehf.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
3- 4 I2 --- Ji [2/21] Initial level J value
7- 8 I2 --- Jf [1/20] Final level J value
13- 21 E9.4 cm3/s RC1 Rotational quenching rate coefficient for T=1K
23- 31 E9.4 cm3/s RC2 Rotational quenching rate coefficient for T=2K
33- 41 E9.4 cm3/s RC5 Rotational quenching rate coefficient for T=5K
43- 51 E9.4 cm3/s RC10 Rotational quenching rate coefficient for T=10K
53- 61 E9.4 cm3/s RC20 Rotational quenching rate coefficient for T=20K
63- 71 E9.4 cm3/s RC30 Rotational quenching rate coefficient for T=30K
73- 81 E9.4 cm3/s RC40 Rotational quenching rate coefficient for T=40K
83- 91 E9.4 cm3/s RC50 Rotational quenching rate coefficient for T=50K
93-101 E9.4 cm3/s RC60 Rotational quenching rate coefficient for T=60K
103-111 E9.4 cm3/s RC70 Rotational quenching rate coefficient for T=70K
113-121 E9.4 cm3/s RC80 Rotational quenching rate coefficient for T=80K
123-131 E9.4 cm3/s RC90 Rotational quenching rate coefficient for T=90K
133-141 E9.4 cm3/s RC100 Rotational quenching rate coefficient for T=100K
143-151 E9.4 cm3/s RC150 Rotational quenching rate coefficient for T=150K
153-161 E9.4 cm3/s RC200 Rotational quenching rate coefficient for T=200K
163-171 E9.4 cm3/s RC300 Rotational quenching rate coefficient for T=300K
173-181 E9.4 cm3/s RC400 Rotational quenching rate coefficient for T=400K
183-191 E9.4 cm3/s RC500 Rotational quenching rate coefficient for T=500K
193-201 E9.4 cm3/s RC600 Rotational quenching rate coefficient for T=600K
203-211 E9.4 cm3/s RC700 Rotational quenching rate coefficient for T=700K
213-221 E9.4 cm3/s RC800 Rotational quenching rate coefficient for T=800K
223-231 E9.4 cm3/s RC900 Rotational quenching rate coefficient for T=900K
233-241 E9.4 cm3/s RC1000 Rotational quenching rate coefficient for T=1000K
243-251 E9.4 cm3/s RC1500 Rotational quenching rate coefficient for T=1500K
253-261 E9.4 cm3/s RC2000 Rotational quenching rate coefficient for T=2000K
263-271 E9.4 cm3/s RC2500 Rotational quenching rate coefficient for T=2500K
273-281 E9.4 cm3/s RC3000 Rotational quenching rate coefficient for T=3000K
--------------------------------------------------------------------------------
Acknowledgements:
Benhui Yang, yang(at)physast.uga.edu
(End) Patricia Vannier [CDS] 29-Apr-2015