J/A+A/603/A118 Systematic survey of wind mass loss (Renzo+, 2017)
Systematic survey of the effects of wind mass loss algorithms on
the evolution of single massive stars.
Renzo M., Ott C.D., Shore S.N., de Mink S.E.
<Astron. Astrophys. 603, A118 (2017)>
=2017A&A...603A.118R 2017A&A...603A.118R (SIMBAD/NED BibCode)
ADC_Keywords: Supernovae ; Models ; Mass loss
Keywords: stars: evolution - stars: massive - stars: mass-loss -
stars: winds, outflows - supernovae: general
Abstract:
Mass loss processes are a key uncertainty in the evolution of massive
stars. They determine the amount of mass and angular momentum retained
by the star, thus influencing its evolution and presupernova
structure. Because of the high complexity of the physical processes
driving mass loss, stellar evolution calculations must employ
parametric algorithms, and usually only include wind mass loss. We
carried out an extensive parameter study of wind mass loss and its
effects on massive star evolution using the open-source stellar
evolution code MESA. We provide a systematic comparison of wind mass
loss algorithms for solar-metallicity, nonrotating, single stars in
the initial mass range of 15M☉ to 35M☉. We consider
combinations drawn from two hot phase (i.e., roughly the main
sequence) algorithms, three cool phase (i.e., post-main-sequence)
algorithms, and two Wolf-Rayet mass loss algorithms. We discuss
separately the effects of mass loss in each of these phases. In
addition, we consider linear wind efficiency scale factors of 1, 0.33,
and 0.1 to account for suggested reductions in mass loss rates due to
wind inhomogeneities. We find that the initial to final mass mapping
for each zero-age main-sequence (ZAMS) mass has a ∼50% uncertainty if
all algorithm combinations and wind efficiencies are considered. The
ad-hoc efficiency scale factor dominates this uncertainty. While the
final total mass and internal structure of our models vary
tremendously with mass loss treatment, final luminosity and effective
temperature are much less sensitive for stars with ZAMS mass
≤30M☉. This indicates that uncertainty in wind mass loss does
not negatively affect estimates of the ZAMS mass of most single-star
supernova progenitors from pre-explosion observations. Our results
furthermore show that the internal structure of presupernova stars is
sensitive to variations in both main sequence and post main-sequence
mass loss. The compactness parameter ξ∝M/R(M) has been
identified as a proxy for the "explodability" of a given presupernova
model. We find that ξ varies by as much as 30% for models of the
same ZAMS mass evolved with different wind efficiencies and mass loss
algorithm combinations. This suggests that the details of the mass
loss treatment might bias the outcome of detailed core-collapse
supernova calculations and the predictions for neutron star and black
hole formation.
Description:
Output of stellar structure and evolution models computed with MESA,
revision 7624.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
table34.dat 48 94 Data from tables 3 and 4: end of mass loss phase
table5.dat 22 5 Maximum spreads at the end of mass loss phase
table6.dat 43 30 Models at the end of the hot phase of evolution
table7.dat 40 43 Models at oxygen depletion
table8.dat 44 6 Models at the onset of core collapse
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table34.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 Msun Mzams Zero age main sequence mass
4- 7 F4.2 ---- eta Wind efficiency parameter
9- 16 A8 ---- ID Wind combination identifier
18- 22 F5.2 Msun M Final mass
24- 28 F5.2 Msun MHe Helium core mass
30- 34 F5.2 Msun MCO Carbon Oxygen core mass
36- 38 I3 Rsun R Final radius
40- 43 F4.2 [Lsun] log10L log10 luminosity
45- 48 F4.2 [K] log10Teff log10 effective temperature
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table5.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 Msun Mzams Zero age main sequence mass
4- 6 I3 Rsun DeltaR Maximum spread in radii
8- 12 F5.2 Msun DeltaM Maximum spread in final masses
14- 17 F4.2 Msun DeltaMHe Maximum spread He core mass
19- 22 F4.2 Msun DeltaMCO Maximum spread CO core mass
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table6.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1 A1 --- hotwind [VK] Model for hotwind (1)
3- 4 I2 Msun Mzams Zero age main sequence mass
6- 9 F4.2 --- eta Wind efficiency parameter
12- 17 F6.2 Rsun R Radius at end hot phase
19- 23 F5.2 10+4Lsun L Luminosity at end hot phase
25- 29 F5.2 Msun Mendhot Mass at the end of hot phase
31- 35 F5.2 Msun MHe Helium core mass (at end hot phase)
37- 43 F7.4 10+6yr age Duration of the hot phase
--------------------------------------------------------------------------------
Note (1): Model as follows:
V = Vink et al. (2000A&A...362..295V 2000A&A...362..295V, 2001A&A...369..574V 2001A&A...369..574V)
K = Kudritzki et al. (1989A&A...219..205K 1989A&A...219..205K)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table7.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 Msun Mzams Zero age main sequence mass
4- 7 F4.2 ---- eta Wind efficiency parameter
9- 12 A4 ---- ID Wind combination identifier
14- 17 I4 Rsun R Radius at oxygen depletion
19- 23 F5.2 Msun M Final masses at oxygen depletion
25- 29 F5.2 Msun MHe He core mass at oxygen depletion
31- 34 F4.2 Msun MCO CO core mass at oxygen depletion
36- 40 F5.3 ---- xi compactness parameter at O depl.
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table8.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 2 I2 Msun Mzams Zero age main sequence mass
4- 7 F4.2 ---- eta Wind efficiency parameter
9- 12 A4 ---- ID Wind combination identifier
14- 18 F5.3 ---- xi Compactness parameter at pre-SN
20- 23 F4.2 Msun M4 Mass coordinate of entropy s=4
25- 29 F5.3 ---- mu4 Ertl et al. (2016ApJ...818..124E 2016ApJ...818..124E)
parameter (dm/dr at s=4)
31- 34 F4.2 Msun Mrho6 Mass coordinate of density=1e6
36- 39 F4.2 Msun MCO pre-SN CO core mass
41- 44 F4.2 Msun MFe pre-SN iron core mass
--------------------------------------------------------------------------------
Acknowledgements:
Mathieu Renzo, m.renzo(at)uva.nl
(End) Mathieu Renzo [Univ. of Amsterdam], Patricia Vannier [CDS] 04-Apr-2017