J/A+A/629/A73   Rotational spectroscopy of methyl mercaptan  (Zakharenko+, 2019)

Rotational spectroscopy of methyl mercaptan CH332SH at millimeter and submillimeter wavelengths. Zakharenko O., Ilyushin V.V., Lewen F., Mueller H.S.P., Schlemmer S., Alekseev E.A., Pogrebnyak M.L, Armieieva I.A., Dorovskaya O., Xu L.-H., Lees R.M. <Astron. Astrophys. 629, A73 (2019)> =2019A&A...629A..73Z 2019A&A...629A..73Z (SIMBAD/NED BibCode)
ADC_Keywords: Atomic physics Keywords: methods: laboratory: molecular - techniques: spectroscopic - ISM: molecules - astrochemistry - molecular data - astronomical databases: miscellaneous Abstract: We present a new global study of the millimeter wave, submillimeter wave, and THz spectra of the lowest three torsional states of methyl mercaptan (CH3SH). New measurements have been carried out between 50 and 510GHz using the Kharkiv mm wave and the Cologne submm wave spectrometers whereas THz spectra records were used from our previous study. The new data involving torsion-rotation transitions with J up to 61 and Ka up to 18 were combined with previously published measurements and fitted using the rho-axis-method torsion-rotation Hamiltonian. The final fit used 124 parameters to give an overall weighted root- mean-square deviation of 0.72 for the dataset consisting of 6965 microwave and 16345 FIR line frequencies sampling transitions within and between the ground, first, and second excited torsional states of the molecule. This investigation presents a twofold expansion in the J quantum numbers and a significant improvement in the fit quality, especially for the microwave part of the data thus allowing us to provide improved predictions to support astronomical observations. Description: ftfirdat.dat contains FTFIR data used in the current fit of methyl mercaptan spectrum. mwdata.dat contains microwave data used in the current fit of methyl mercaptan spectrum. predict.dat contains calculated spectrum of methyl mercaptan main isotopolog for the ground, first, and second excited torsional states in the range 1-2000GHz. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file ftfirdat.dat 68 19466 FTFIR data used in the current fit of methyl mercaptan spectrum mwdata.dat 75 7813 Microwave data used in the current fit of methyl mercaptan spectrum predict.dat 82 39296 Predicted transitions of the vt=0,1,2 torsional states of methyl mercaptan in 1-2000GHz range -------------------------------------------------------------------------------- Byte-by-byte Description of file: ftfirdat.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 A2 --- Sym1 Upper level symmetry species in G6 4- 5 I2 --- m1 Upper free rotor m quantum number 8- 9 I2 --- J1 Upper J quantum number 11- 13 I3 --- Ka1 Upper Ka quantum number 16- 17 I2 --- Kc1 Upper Kc quantum number 22- 23 A2 --- Sym0 Lower level symmetry species in G6 25- 26 I2 --- m0 Lower free rotor m quantum number 29- 30 I2 --- J0 Lower J quantum number 32- 34 I3 --- Ka0 Lower Ka quantum number 37- 38 I2 --- Kc0 Lower Kc quantum number 41- 49 F9.5 cm-1 Freq Measured transition frequency 52- 58 F7.5 cm-1 Unc Measurement uncertainty of transition frequency 61- 68 F8.5 cm-1 O-C Obs.-cal. difference in the fit -------------------------------------------------------------------------------- Byte-by-byte Description of file: mwdata.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 A2 --- Sym1 Upper level symmetry species in G6 4- 5 I2 --- m1 Upper free rotor m quantum number 8- 9 I2 --- J1 Upper J quantum number 11- 13 I3 --- Ka1 Upper Ka quantum number 16- 17 I2 --- Kc1 Upper Kc quantum number 22- 23 A2 --- Sym0 Lower level symmetry species in G6 25- 26 I2 --- m0 Lower free rotor m quantum number 29- 30 I2 --- J0 Lower J quantum number 32- 34 I3 --- Ka0 Lower Ka quantum number 37- 38 I2 --- Kc0 Lower Kc quantum number 41- 51 F11.3 MHz Freq Measured transition frequency 53- 59 F7.3 MHz Unc Measurement uncertainty of transition frequency 62- 69 F8.3 MHz O-C Obs.-cal. difference in the fit 70- 75 A6 --- Com Source of the data (1) -------------------------------------------------------------------------------- Note (1): Blank space - current work, letter coding from Xu et al. (2012, J. Chem. Phys., 137, 104313): Asterisks mark those lines which were excluded from the fit in Xu et al. (Xu, L.-H., Lees, R. M., Crabbe, G. T., et al., 2012, J. Chem. Phys., 137, 104313). -------------------------------------------------------------------------------- Byte-by-byte Description of file: predict.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 2 A2 --- Sym1 Upper level symmetry species in G6 4- 5 I2 --- m1 Upper free rotor m quantum number 8- 9 I2 --- J1 Upper J quantum number 11- 13 I3 --- Ka1 Upper Ka quantum number 16- 17 I2 --- Kc1 Upper Kc quantum number 22- 23 A2 --- Sym0 Lower level symmetry species in G6 25- 26 I2 --- m0 Lower free rotor m quantum number 29- 30 I2 --- J0 Lower J quantum number 32- 34 I3 --- Ka0 Lower Ka quantum number 37- 38 I2 --- Kc0 Lower Kc quantum number 40- 52 F13.4 MHz Freq Predicted transition frequency 54- 60 F7.4 MHz Unc Predicted uncertainty of transition frequency 64- 72 F9.4 cm-1 Elow The energy of the lower state 76- 82 F7.3 D+2 mu2S Linestrength multiplied by dipole moment squared -------------------------------------------------------------------------------- Acknowledgements: Holger S.P. Muller, hspm(at)ph1.uni-koeln.de
(End) Holger S.P. Muller [Univ. Cologne], Patricia Vannier [CDS] 31-Jul-2019
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line