J/A+A/640/A132    BL Lacs optical light curves & X-ray prop. (MAGIC Coll., 2020)
Testing two-component models on very high-energy gamma-ray-emitting
BL Lac objects.
    MAGIC Collaboration, Acciari V.A., Ansoldi S., Antonelli L.A.,
    Arbet Engels A., Baack D., Babic A., Banerjee B., Barres de Almeida U.,
    Barrio J.A., Becerra Gonzalez J., Bednarek W., Bellizzi L., Bernardini E.,
    Berti A., Besenrieder J., Bhattacharyya W., Bigongiari C., Biland A.,
    Blanch O., Bonnoli G., Bosnjak Z., Busetto G., Carosi R., Ceribella G.,
    Cerruti M., Chai Y., Chilingarian A., Cikota S., Colak S.M., Colin U.,
    Colombo E., Contreras J.L., Cortina J., Covino S., D'Amico G., D'Elia V.,
    Da Vela P., Dazzi F., De Angelis A., De Lotto B., Delfino M., Delgado J.,
    Depaoli D., Di Pierro F., Di Venere L., Do Souto Espineira E.,
    Dominis Prester D., Donini A., Dorner D., Doro M., Elsaesser D.,
    Fallah Ramazani V., Fattorini A., Ferrara G., Foano L., Fonseca M.V.,
    Font L., Fruck C., Fukami S., Garcia Lopez R.J., Garczarczyk M.,
    Gasparyan S., Gaug M., Giglietto N., Giordano F., Gliwny P., Godinovic N.,
    Green D., Hadasch D., Hahn A., Herrera J., Hoang J., Hrupec D., Huetten M.,
    Inada T., Inoue S., Ishio K., Iwamura Y., Jouvin L., Kajiwara Y.,
    Karjalainen M., Kerszberg D., Kobayashi Y., Kubo H., Kushida J.,
    Lamastra A., Lelas D., Leone F., Lindfors E., Lombardi S., Longo F.,
    Lopez M., Lopez-Coto R., Lopez-Oramas A., Loporchio S.,
    Machado de Oliveira Fraga B., Maggio C., Majumdar P., Makariev M.,
    Mallamaci M., Maneva G., Manganaro M., Mannheim K., Maraschi L.,
    Mariotti M., Martinez M., Mazin D., Mender S., Micanovic S., Miceli D.,
    Miener T., Minev M., Miranda J.M., Mirzoyan R., Molina E., Moralejo A.,
    Morcuende D., Moreno V., Moretti E., Munar-Adrover P., Neustroev V.,
    Nigro C., Nilsson K., Ninci D., Nishijima K., Noda K., Nogues L.,
    Nozaki S., Ohtani Y., Oka T., Otero-Santos J., Palatiello M., Paneque D.,
    Paoletti R., Paredes J.M., Pavletic L., Penil P., Peresano M., Persic M.,
    Prada Moroni P.G., Prandini E., Puljak I., Rhode W., Ribo M., Rico J.,
    Righi C., Rugliancich A., Saha L., Sahakyan N., Saito T., Sakurai S.,
    Satalecka K., Schleicher B., Schmidt K., Schweizer T., Sitarek J.,
    Snidaric I., Sobczynska D., Spolon A., Stamerra A., Strom D., Strzys M.,
    Suda Y., Suric T., Takahashi M., Tavecchio F., Temnikov P., Terzic T.,
    Teshima M., Torres-Alba N., Tosti L., van Scherpenberg J., Vanzo G.,
    Vazquez Acosta M., Ventura S., Verguilov V., Vigorito C.F., Vitale V.,
    Vovk I., Will M., Zaric D., Nievas-Rosillo M., Arcaro C., D'Ammando F.,
    de Palma F., Hodges M., Hovatta T., Kiehlmann S., Max-Moerbeck W.,
    Readhead A.C.S., Reeves R., Takalo L., Reinthal R., Jormanainen J.,
    Wierda F., Wagner S.M., Berdyugin A., Nabizadeh A., Talebpour Sheshvan N.,
    Oksanen A., Bachev R., Strigachev A., Kehusmaa P.
    <Astron. Astrophys. 640, A132 (2020)>
    =2020A&A...640A.132M 2020A&A...640A.132M        (SIMBAD/NED BibCode)
ADC_Keywords: BL Lac objects ; Photometry ; X-ray sources
Keywords: galaxies: active - galaxies: jets - BL Lacertae objects: general -
          astronomical databases: miscellaneous -
          radiation mechanisms: non-thermal - gamma rays: galaxies
Abstract:
    It has become evident that one-zone synchrotron self-Compton models
    are not always adequate for very high-energy (VHE) gamma-ray-emitting
    blazars. While two-component models perform better, they are difficult
    to constrain due to the large number of free parameters.
    In this work, we make a first attempt at taking into account the
    observational constraints from very long baseline interferometry
    (VLBI) data, long-term light curves (radio, optical, and X-rays), and
    optical polarisation to limit the parameter space for a two-component
    model and test whether or not it can still reproduce the observed
    spectral energy distribution (SED) of the blazars.
    We selected five TeV BL Lac objects based on the availability of VHE
    gamma-ray and optical polarisation data. We collected constraints for
    the jet parameters from VLBI observations. We evaluated the
    contributions of the two components to the optical flux by means of
    decomposition of long-term radio and optical light curves as well as
    modelling of the optical polarisation variability of the objects. We
    selected eight epochs for these five objects based on the variability
    observed at VHE gamma rays, for which we constructed the SEDs that we
    then modelled with a two-component model.
    We found parameter sets which can reproduce the broadband SED of the
    sources in the framework of two-component models considering all
    available observational constraints from VLBI observations. Moreover,
    the constraints obtained from the long-term behaviour of the sources
    in the lower energy bands could be used to determine the region where
    the emission in each band originates. Finally, we attempt to use
    optical polarisation data to shed new light on the behaviour of the
    two components in the optical band. Our observationally constrained
    two-component model allows explanation of the entire SED from radio to
    VHE with two co-located emission regions.
Description:
    Tuorla blazar monitoring program, Optical R-Band (Cousine), 2012
    September 30 to 2018 July 21.
    Swift-XRT, Spectral properties and flux, 2012 September 30 to 2018
    October 9.
File Summary:
--------------------------------------------------------------------------------
 FileName      Lrecl  Records   Explanations
--------------------------------------------------------------------------------
ReadMe            80        .   This file
table1.dat        72        5   General properties of the selected TeV BL Lacs
                                 and the correction coefficients used in
                                 optical, UV, and X-ray data analysis
tablea1.dat       35     1550   The optical (R-band) light-curve data
tablea2.dat      119      569   Results of Swift-XRT observations
--------------------------------------------------------------------------------
Byte-by-byte Description of file: table1.dat
--------------------------------------------------------------------------------
  Bytes Format Units    Label    Explanations
--------------------------------------------------------------------------------
  1- 13  A13   ---      Name     Source name
 15- 16  I2    h        RAh      Right ascension (J2000)
 18- 19  I2    min      RAm      Right ascension (J2000)
 21- 24  F4.1  s        RAs      Right ascension (J2000)
     26  A1    ---      DE-      Declination sign (J2000)
 27- 28  I2    deg      DEd      Declination (J2000)
 30- 31  I2    arcmin   DEm      Declination (J2000)
 33- 34  I2    arcsec   DEs      Declination (J2000)
     36  A1    ---    l_z        Lower limit on z based on spectroscopy
                                  (Paiano et al., 2017ApJ...837..144P 2017ApJ...837..144P)
 37- 41  F5.3  ---      z        Redshift
 43- 47  F5.3  mag      AR       R-band Galactic extinction (1)
 49- 52  F4.2 10+21cm-2 NH       Equivalent Galactic hydrogen column density (2)
 54- 56  F3.1  arcsec   rap(ph)  Aperture radius for optical photometry
 58- 60  F3.1  arcsec   rap(pol) Aperture radius for polarisation observation
 62- 65  F4.2  mJy      Fhostph  Contribution of the host-galaxy flux (R-band)
                                  within the aperture for optical photometry
     66  A1    ---    n_Fhostph  [cbd] Note on Fhostph
 68- 71  F4.2  mJy      Fhostpol Contribution of the host-galaxy flux (R-band)
                                  within the aperture for polarisation
                                 observation
     72  A1    ---    n_Fhostpol [cbd] Note on Fhostpol (3)
--------------------------------------------------------------------------------
Note (1): reported by Schlafly & Finkbeiner (2011ApJ...737..103S 2011ApJ...737..103S) used for
   correcting the optical observations.
Note (2): Equivalent Galactic hydrogen column density reported by Kalberla et 
   al. (2005A&A...440..775K 2005A&A...440..775K, Cat. VIII/76) used for correcting UV and X-ray 
   observations.
Note (3): Notes as follows:
   b = Assumed to be zero based on the uncertainty of the redshift and
        the reported redshift lower limit
   c = Reported by Scarpa et al. (2000ApJ...532..740S 2000ApJ...532..740S)
   d = Reported by Nilsson et al. (2007A&A...475..199N 2007A&A...475..199N)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea1.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label     Explanations
--------------------------------------------------------------------------------
   1- 13  A13   ---     Name      Taget name
  15- 24  F10.2 d       JD        Julian date
  26- 30  F5.2  mJy     Flux      Optical (R-band) flux
  32- 35  F4.2  mJy   e_Flux      Optical (R-band) flux error
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea2.dat
--------------------------------------------------------------------------------
   Bytes Format Units       Label    Explanations
--------------------------------------------------------------------------------
   1- 13  A13   ---         Name     Target Name
  15- 22  F8.2  d           MJD      Modified Julian date (start of observation)
  24- 34  I11   ---         OID      Swift observation ID
  36- 39  I4    s           ExpTime  Exposure time
  41- 44  F4.2  ---         Gamma-PL ? Spectral index of power the law model
  46- 49  F4.2  ---       e_Gamma-PL ? Spectral index error of the power law
                                      model
  51- 55  F5.1  ---         CHI2-PL  ? Chi2 value of the fitted power law
                                      model
  57- 59  I3    ---         DOF-PL   ? Degree of the freedom of the fitted power
                                      law model
  61- 64  F4.2  ---         Gamma-LP ? Spectral index of the logparabola model
  66- 69  F4.2  ---       e_Gamma-LP ? Spectral index error of the
                                       logparabola model
  71- 74  F4.2  ---         Beta-LP  ? Curvature parameter of the logparabola
                                      model
  76- 79  F4.2  ---       e_Beta-LP  ? Curvature parameter error of the
                                       logparabola model
  81- 85  F5.1  ---         CHI2-LP  ? Chi^2 value of the fitted logparabola
                                      model
  87- 89  I3    ---         DOF-LP   ? Degree of the freedom of the fitted
                                      logparabola model
      91  A1    ---       l_Prob     Limit flag on Prob
  92- 96  F5.2  %           Prob     Null-hypotheses probability of the
                                      F-test (1)
  98-102  F5.1  10-15W/m2   F1       X-ray flux in the range of 2-10keV
 104-107  F4.1  10-15W/m2 e_F1       X-ray flux error in the range of 2-10keV
 109-114  F6.1  10-15W/m2   F2       X-ray flux in the range of 0.3-10keV
 116-119  F4.1  10-15W/m2 e_F2       X-ray flux error in the range of 0.3-10keV
--------------------------------------------------------------------------------
Note (1): The logparabola model is preferred over the powerlaw model at 3-sigma
  confidence level if the F-test probability value is less than 0.27%.
--------------------------------------------------------------------------------
Acknowledgements:
   Vandad Fallah Ramazani, vafara(at)utu.fi
(End)                                        Patricia Vannier [CDS]  10-Aug-2020