J/A+A/641/A177 56Ni masses in supernovae (Meza+, 2020)
Stripped-envelope core-collapse supernova 56Ni masses.
Persistently larger values than supernovae type II.
Meza N., Anderson J.P.
<Astron. Astrophys., 641, A177 (2020)>
=2020A&A...641A.177M 2020A&A...641A.177M (SIMBAD/NED BibCode)
ADC_Keywords: Supernovae ; Abundances
Keywords: supernovae: general
Abstract:
The mass of synthesised radioactive material is an important power
source for all supernova (SN) types. In addition, the difference of
56Ni yields statistics are relevant to constrain progenitor paths
and explosion mechanisms.
Here, we re-estimate the nucleosynthetic yields of 56Ni for a
well-observed and well-defined sample of stripped-envelope SNe
(SE-SNe) in a uniform manner. This allows us to investigate whether
the observed hydrogen-rich-stripped-envelope (SN II-SE SN) 56Ni
separation is due to real differences between these SN types or
because of systematic errors in the estimation methods.
We compiled a sample of well-observed SE-SNe and measured 56Ni
masses through three different methods proposed in the literature:
first, the classic "Arnett rule"; second the more recent prescription
of Khatami & Kasen (2019ApJ...878...56K 2019ApJ...878...56K) and third using the tail
luminosity to provide lower limit 56Ni masses. These SE-SN
distributions were then compared to those compiled in this article.
Results. Arnett's rule, as previously shown, gives 56Ni masses for
SE-SNe that are considerably higher than SNe II. While for the
distributions calculated using both the Khatami & Kasen
(2019ApJ...878...56K 2019ApJ...878...56K) prescription and Tail 56Ni masses are offset
to lower values than "Arnett values", their 56Ni distributions are
still statistically higher than that of SNe II. Our results are
strongly driven by a lack of SE-SN with low 56Ni masses, that are,
in addition, strictly lower limits. The lowest SE-SN 56Ni mass in
our sample is of 0.015M☉, below which are more than 25% of
SNe II.
We conclude that there exist real, intrinsic differences in the mass
of synthesised radioactive material between SNe II and SE-SNe (types
IIb, Ib, and Ic). Any proposed current or future CC SN progenitor
scenario and explosion mechanism must be able to explain why and how
such differences arise or outline a bias in current SN samples yet to
be fully explored.
Description:
Table A.1 lists the SE-SNe used in this work, together with their
types, and various other relevant parameters.
Table A.2 list peak parameters of our BVRIYJH light curves and the
56Ni masses with different methods.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablea1.dat 77 37 Sample of SE SNe used in this work
tablea2.dat 45 37 Peak parameters of our BVRIYJH light curves and
the 56Ni masses obtained as described in Sect. 3
tablec1.dat 99 115 SN II sample taken from Anderson
(2019A&A...628A...7A 2019A&A...628A...7A)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 A9 --- SN SN name
11- 17 A7 --- Type SN type
19- 32 A14 --- Host Host galaxy name
34- 42 F9.6 --- Hostz Host heliocentric Redshift (1)
44- 49 F6.2 Mpc HostdL Host luminosity distance
51- 54 F4.2 mag MWE(B-V) Milky Way redenning
56- 59 F4.2 mag HostE(B-V) ? Host galaxy redenning (2)
61- 68 F8.2 d t0 Explosion epoch, MJD
70- 77 A8 --- Refs References (3)
--------------------------------------------------------------------------------
Note (1): Selection criteria for this sample is described in Sect. 2.
Note (2): Zero values are consistent with no host reddening, as published in the
proper references.
Note (3): References as follows:
CSP = Taddia et al. (2018A&A...609A.136T 2018A&A...609A.136T)
Cfa = Bianco et al. (2014ApJS..213...19B 2014ApJS..213...19B)
a = Richmond et al. (1994AJ....107.1022R 1994AJ....107.1022R, Cat. J/AJ/107/1022)
b = Mirabal et al. (2006ApJ...643L..99M 2006ApJ...643L..99M)
c = Hunter et al. (2009A&A...508..371H 2009A&A...508..371H, Cat. J/A+A/508/371)
d = Roy et al. (2013MNRAS.434.2032R 2013MNRAS.434.2032R)
e = Inserra (2013A&A...555A.142I 2013A&A...555A.142I. Cat. J/A+A/555/A142)
g = Mazzali et al. (2008Sci...321.1185M 2008Sci...321.1185M), Tanaka et al. (2009)
h = Pignata et al. (2011ApJ...728...14P 2011ApJ...728...14P, Cat. J/ApJ/728/14)
i = Valenti et al. (2011MNRAS.416.3138V 2011MNRAS.416.3138V. Cat. J/MNRAS/416/3138)
j = Foley et al. (2014ApJ...792...29F 2014ApJ...792...29F)
k = Cano et al. (2011ApJ...740...41C 2011ApJ...740...41C),
Olivares et al. (2012, IAU Symp., 279, 375)
l = Morales-Garoffolo et al. (2015MNRAS.454...95M 2015MNRAS.454...95M, Cat. J/MNRAS/454/95)
m = Arcavi et al. (2011ApJ...742L..18A 2011ApJ...742L..18A, Cat. J/ApJ/742/L18),
Sahu et al. (2013MNRAS.433....2S 2013MNRAS.433....2S),
Ergon et al. (2015A&A...580A.142E 2015A&A...580A.142E, Cat. J/A+A/580/A142)
n = Bufano et al. (2014MNRAS.439.1807B 2014MNRAS.439.1807B)
o = Van Dyk et al. (2014AJ....147...37V 2014AJ....147...37V)
p = Yamanaka et al. (2017), Prentice et al. (2018MNRAS.478.4162P 2018MNRAS.478.4162P)
q = Nakaoka et al. (2019ApJ...875...76N 2019ApJ...875...76N)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 9 A9 --- SN SN name
12- 17 A6 --- Type SN type
20- 24 F5.2 d tp Time peak
26- 30 F5.2 10+36W Lp Peak luminosity (in 10+41erg/s unit) (1)
32- 35 F4.2 Msun MArnett 56Ni mass limit with Arnett method (1)
37- 40 F4.2 Msun MK+K 56Ni mass limit with Khatami & Kasen
(2019ApJ...878...56K 2019ApJ...878...56K) method (1)
42- 45 F4.2 Msun MTail ? 56Ni mass limit with method (1)
--------------------------------------------------------------------------------
Note (1): All our luminosities and nickel masses are lower limits, as described
in the manuscript.
For the Khatami & Kasen (2019ApJ...878...56K 2019ApJ...878...56K) 56Ni values we use their
recomended β values, of 0.82 for SNe IIb, and 9/8 for SNe Ib and SNe Ic
(including SNe Ic-BL).
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablec1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- SN SN name
13- 39 A27 --- Host SN host galaxy name
42- 47 F6.2 Mpc HostdL Host galaxy luminosity distances, from NED
49- 54 F6.4 --- MNickel Nickel mass (1)
55- 59 F5.3 mag HostAV Host galaxy extinction values (2)
61- 99 A39 --- Ref References for nickel masses and host galaxy
extinction values (3)
--------------------------------------------------------------------------------
Note (1): All nickel masses are the mean of the individual measurements
given in the references.
Note (2): The host reddening is also the mean of the values given in these
references. Using the nickel mass and extinction from this table the results
of Sect. 4.2.3 can be accurately reproduced.
Note (3): References code as follows:
H03 = Hamuy (2003IAUC.8045....3H 2003IAUC.8045....3H)
E03 = Elmhamdi et al. (2003A&A...404.1077E 2003A&A...404.1077E)
N03 = Nadyozhin (2003MNRAS.346...97N 2003MNRAS.346...97N)
PP15 = Pejcha & Prieto (ApJ, 806, 225)
V15 = Valenti et al. (2015MNRAS.448.2608V 2015MNRAS.448.2608V. Cat. J/MNRAS/448/2608)
V16 = Valenti et al. (2016MNRAS.459.3939V 2016MNRAS.459.3939V, Cat. J/MNRAS/459/3939)
G17 = Gutierrez et al. (2017ApJ...850...89G 2017ApJ...850...89G)
M17 = Mueller et al. (2017ApJ...841..127M 2017ApJ...841..127M)
(a) = Kleiser et al. (2011MNRAS.415..372K 2011MNRAS.415..372K)
(b) = Taddia et al. (2012A&A...537A.140T 2012A&A...537A.140T)
(c) = Spiro et al. (2014MNRAS.439.2873S 2014MNRAS.439.2873S)
(d) = Pastorello (2004MNRAS.347...74P 2004MNRAS.347...74P)
(e) = Inserra (2013A&A...555A.142I 2013A&A...555A.142I, Cat. J/A+A/555/A142)
(f) = Zampieri et al. (2003MNRAS.338..711Z 2003MNRAS.338..711Z)
(g) = Turatto et al. (1998ApJ...498L.129T 1998ApJ...498L.129T)
(h) = Otsuka et al. (2012ApJ...744...26O 2012ApJ...744...26O)
(i) = Bersten et al. (2011ApJ...729...61B 2011ApJ...729...61B)
(j) = Jerkstrand et al. (2015MNRAS.448.2482J 2015MNRAS.448.2482J)
(k) = Barbarino (2015MNRAS.448.2312B 2015MNRAS.448.2312B)
(l) = Yuan et al. (2016MNRAS.461.2003Y 2016MNRAS.461.2003Y, Cat. J/MNRAS/461/2003)
(m) = Dhungana et al. (2016ApJ...822....6D 2016ApJ...822....6D)
(n) = Huang et al. (2015ApJ...807...59H 2015ApJ...807...59H)
(o) = Bose et al. (2015ApJ...806..160B 2015ApJ...806..160B)
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Patricia Vannier [CDS] 16-Nov-2020