J/A+A/641/A177      56Ni masses in supernovae                (Meza+, 2020)

Stripped-envelope core-collapse supernova 56Ni masses. Persistently larger values than supernovae type II. Meza N., Anderson J.P. <Astron. Astrophys., 641, A177 (2020)> =2020A&A...641A.177M 2020A&A...641A.177M (SIMBAD/NED BibCode)
ADC_Keywords: Supernovae ; Abundances Keywords: supernovae: general Abstract: The mass of synthesised radioactive material is an important power source for all supernova (SN) types. In addition, the difference of 56Ni yields statistics are relevant to constrain progenitor paths and explosion mechanisms. Here, we re-estimate the nucleosynthetic yields of 56Ni for a well-observed and well-defined sample of stripped-envelope SNe (SE-SNe) in a uniform manner. This allows us to investigate whether the observed hydrogen-rich-stripped-envelope (SN II-SE SN) 56Ni separation is due to real differences between these SN types or because of systematic errors in the estimation methods. We compiled a sample of well-observed SE-SNe and measured 56Ni masses through three different methods proposed in the literature: first, the classic "Arnett rule"; second the more recent prescription of Khatami & Kasen (2019ApJ...878...56K 2019ApJ...878...56K) and third using the tail luminosity to provide lower limit 56Ni masses. These SE-SN distributions were then compared to those compiled in this article. Results. Arnett's rule, as previously shown, gives 56Ni masses for SE-SNe that are considerably higher than SNe II. While for the distributions calculated using both the Khatami & Kasen (2019ApJ...878...56K 2019ApJ...878...56K) prescription and Tail 56Ni masses are offset to lower values than "Arnett values", their 56Ni distributions are still statistically higher than that of SNe II. Our results are strongly driven by a lack of SE-SN with low 56Ni masses, that are, in addition, strictly lower limits. The lowest SE-SN 56Ni mass in our sample is of 0.015M, below which are more than 25% of SNe II. We conclude that there exist real, intrinsic differences in the mass of synthesised radioactive material between SNe II and SE-SNe (types IIb, Ib, and Ic). Any proposed current or future CC SN progenitor scenario and explosion mechanism must be able to explain why and how such differences arise or outline a bias in current SN samples yet to be fully explored. Description: Table A.1 lists the SE-SNe used in this work, together with their types, and various other relevant parameters. Table A.2 list peak parameters of our BVRIYJH light curves and the 56Ni masses with different methods. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea1.dat 77 37 Sample of SE SNe used in this work tablea2.dat 45 37 Peak parameters of our BVRIYJH light curves and the 56Ni masses obtained as described in Sect. 3 tablec1.dat 99 115 SN II sample taken from Anderson (2019A&A...628A...7A 2019A&A...628A...7A) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- SN SN name 11- 17 A7 --- Type SN type 19- 32 A14 --- Host Host galaxy name 34- 42 F9.6 --- Hostz Host heliocentric Redshift (1) 44- 49 F6.2 Mpc HostdL Host luminosity distance 51- 54 F4.2 mag MWE(B-V) Milky Way redenning 56- 59 F4.2 mag HostE(B-V) ? Host galaxy redenning (2) 61- 68 F8.2 d t0 Explosion epoch, MJD 70- 77 A8 --- Refs References (3) -------------------------------------------------------------------------------- Note (1): Selection criteria for this sample is described in Sect. 2. Note (2): Zero values are consistent with no host reddening, as published in the proper references. Note (3): References as follows: CSP = Taddia et al. (2018A&A...609A.136T 2018A&A...609A.136T) Cfa = Bianco et al. (2014ApJS..213...19B 2014ApJS..213...19B) a = Richmond et al. (1994AJ....107.1022R 1994AJ....107.1022R, Cat. J/AJ/107/1022) b = Mirabal et al. (2006ApJ...643L..99M 2006ApJ...643L..99M) c = Hunter et al. (2009A&A...508..371H 2009A&A...508..371H, Cat. J/A+A/508/371) d = Roy et al. (2013MNRAS.434.2032R 2013MNRAS.434.2032R) e = Inserra (2013A&A...555A.142I 2013A&A...555A.142I. Cat. J/A+A/555/A142) g = Mazzali et al. (2008Sci...321.1185M 2008Sci...321.1185M), Tanaka et al. (2009) h = Pignata et al. (2011ApJ...728...14P 2011ApJ...728...14P, Cat. J/ApJ/728/14) i = Valenti et al. (2011MNRAS.416.3138V 2011MNRAS.416.3138V. Cat. J/MNRAS/416/3138) j = Foley et al. (2014ApJ...792...29F 2014ApJ...792...29F) k = Cano et al. (2011ApJ...740...41C 2011ApJ...740...41C), Olivares et al. (2012, IAU Symp., 279, 375) l = Morales-Garoffolo et al. (2015MNRAS.454...95M 2015MNRAS.454...95M, Cat. J/MNRAS/454/95) m = Arcavi et al. (2011ApJ...742L..18A 2011ApJ...742L..18A, Cat. J/ApJ/742/L18), Sahu et al. (2013MNRAS.433....2S 2013MNRAS.433....2S), Ergon et al. (2015A&A...580A.142E 2015A&A...580A.142E, Cat. J/A+A/580/A142) n = Bufano et al. (2014MNRAS.439.1807B 2014MNRAS.439.1807B) o = Van Dyk et al. (2014AJ....147...37V 2014AJ....147...37V) p = Yamanaka et al. (2017), Prentice et al. (2018MNRAS.478.4162P 2018MNRAS.478.4162P) q = Nakaoka et al. (2019ApJ...875...76N 2019ApJ...875...76N) -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablea2.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 9 A9 --- SN SN name 12- 17 A6 --- Type SN type 20- 24 F5.2 d tp Time peak 26- 30 F5.2 10+36W Lp Peak luminosity (in 10+41erg/s unit) (1) 32- 35 F4.2 Msun MArnett 56Ni mass limit with Arnett method (1) 37- 40 F4.2 Msun MK+K 56Ni mass limit with Khatami & Kasen (2019ApJ...878...56K 2019ApJ...878...56K) method (1) 42- 45 F4.2 Msun MTail ? 56Ni mass limit with method (1) -------------------------------------------------------------------------------- Note (1): All our luminosities and nickel masses are lower limits, as described in the manuscript. For the Khatami & Kasen (2019ApJ...878...56K 2019ApJ...878...56K) 56Ni values we use their recomended β values, of 0.82 for SNe IIb, and 9/8 for SNe Ib and SNe Ic (including SNe Ic-BL). -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablec1.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- SN SN name 13- 39 A27 --- Host SN host galaxy name 42- 47 F6.2 Mpc HostdL Host galaxy luminosity distances, from NED 49- 54 F6.4 --- MNickel Nickel mass (1) 55- 59 F5.3 mag HostAV Host galaxy extinction values (2) 61- 99 A39 --- Ref References for nickel masses and host galaxy extinction values (3) -------------------------------------------------------------------------------- Note (1): All nickel masses are the mean of the individual measurements given in the references. Note (2): The host reddening is also the mean of the values given in these references. Using the nickel mass and extinction from this table the results of Sect. 4.2.3 can be accurately reproduced. Note (3): References code as follows: H03 = Hamuy (2003IAUC.8045....3H 2003IAUC.8045....3H) E03 = Elmhamdi et al. (2003A&A...404.1077E 2003A&A...404.1077E) N03 = Nadyozhin (2003MNRAS.346...97N 2003MNRAS.346...97N) PP15 = Pejcha & Prieto (ApJ, 806, 225) V15 = Valenti et al. (2015MNRAS.448.2608V 2015MNRAS.448.2608V. Cat. J/MNRAS/448/2608) V16 = Valenti et al. (2016MNRAS.459.3939V 2016MNRAS.459.3939V, Cat. J/MNRAS/459/3939) G17 = Gutierrez et al. (2017ApJ...850...89G 2017ApJ...850...89G) M17 = Mueller et al. (2017ApJ...841..127M 2017ApJ...841..127M) (a) = Kleiser et al. (2011MNRAS.415..372K 2011MNRAS.415..372K) (b) = Taddia et al. (2012A&A...537A.140T 2012A&A...537A.140T) (c) = Spiro et al. (2014MNRAS.439.2873S 2014MNRAS.439.2873S) (d) = Pastorello (2004MNRAS.347...74P 2004MNRAS.347...74P) (e) = Inserra (2013A&A...555A.142I 2013A&A...555A.142I, Cat. J/A+A/555/A142) (f) = Zampieri et al. (2003MNRAS.338..711Z 2003MNRAS.338..711Z) (g) = Turatto et al. (1998ApJ...498L.129T 1998ApJ...498L.129T) (h) = Otsuka et al. (2012ApJ...744...26O 2012ApJ...744...26O) (i) = Bersten et al. (2011ApJ...729...61B 2011ApJ...729...61B) (j) = Jerkstrand et al. (2015MNRAS.448.2482J 2015MNRAS.448.2482J) (k) = Barbarino (2015MNRAS.448.2312B 2015MNRAS.448.2312B) (l) = Yuan et al. (2016MNRAS.461.2003Y 2016MNRAS.461.2003Y, Cat. J/MNRAS/461/2003) (m) = Dhungana et al. (2016ApJ...822....6D 2016ApJ...822....6D) (n) = Huang et al. (2015ApJ...807...59H 2015ApJ...807...59H) (o) = Bose et al. (2015ApJ...806..160B 2015ApJ...806..160B) -------------------------------------------------------------------------------- History: From electronic version of the journal
(End) Patricia Vannier [CDS] 16-Nov-2020
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line