J/A+A/648/A66       CORE high-mass star-forming regions          (Gieser+, 2021)

Physical and chemical structure of high-mass star-forming regions. Unraveling chemical complexity with CORE: the NOEMA large program. Gieser C., Beuther H., Semenov D., Ahmadi A., Suri S., Moeller T., Beltran M.T., Klaassen P., Zhang Q., Urquhart J.S., Henning T., Feng S., Galvan-Madrid R., de Souza Magalhaes V., Moscadelli L., Longmore S., Leurini S., Kuiper R., Peters T., Menten K.M., Csengeri T., Fuller G., Wyrowski F., Lumsden S., Sanchez-Monge A., Maud L., Linz H., Palau A., Schilke P., Pety J., Pudritz R., Winters J.M., Pietu V. <Astron. Astrophys. 648, A66 (2021)> =2021A&A...648A..66G 2021A&A...648A..66G (SIMBAD/NED BibCode)
ADC_Keywords: Star Forming Region ; Interstellar medium ; Abundances Keywords: astrochemistry - ISM: molecules - stars: formation Abstract: Characterizing the physical and chemical properties of forming massive stars at the spatial resolution of individual high-mass cores lies at the heart of current star formation research. We use sub-arcsecond resolution (∼0.4arcsec) observations with the NOrthern Extended Millimeter Array at 1.37mm to study the dust emission and molecular gas of 18 high-mass star-forming regions. With distances in the range of 0.7-5.5kpc this corresponds to spatial scales down to 300-2300au that are resolved by our observations. We combine the derived physical and chemical properties of individual cores in these regions to estimate their ages. The temperature structure of these regions are determined by fitting H2CO and CH3CN line emission. The density profiles are inferred from the 1.37mm continuum visibilities. The column densities of 11 different species are determined by fitting the emission lines with XCLASS. Within the 18 observed regions, we identify 22 individual cores with associated 1.37mm continuum emission and with a radially decreasing temperature profile. We find an average temperature power-law index of q=0.4±0.1 and an average density power-law index of p=2.0±0.2 on scales on the order of several 1000au. Comparing these results with values of p derived in the literature suggest that the density profiles remain unchanged from clump to core scales. The column densities relative to N(C18O) between pairs of dense gas tracers show tight correlations. We apply the physical-chemical model MUlti Stage ChemicaL codE (MUSCLE) to the derived column densities of each core and find a mean chemical age of ∼60000yrs and an age spread of 20000-100000yrs. With this paper we release all data products of the CORE project available at https://www.mpia.de/core. The CORE sample reveals well constrained density and temperature power-law distributions. Furthermore, we characterize a large variety in molecular richness that can be explained by an age spread confirmed by our physical-chemical modeling. The hot molecular cores show the most emission lines, but we also find evolved cores at an evolutionary stage, in which most molecules are destroyed and thus the spectra appear line-poor again. Description: Physical and chemical properties of 120 positions toward 18 high-mass star-forming regions of the CORE sample. Table A shows the position (given by the region name and position number); coordinates (J2000); systemic velocity determined by the C18O line; noise in the spectrum; kinetic temperature determined by CH3CN, if detected, or H2CO; 1.37mm continuum intensity; continuum optical depth; and the molecular hydrogen column density. Table E shows the column densities of 13CO, C18O, SO, OCS, SO2, DCN, H2CO, HNCO, HC3N, HC3N v7=1, HC3N v7=2, CH3OH, CH3OH vt=1, and CH3CN derived with XCLASS toward the 120 positions. Lower and upper column density error estimates are given as well. If no lower and upper column density error is shown, the derived column density is an upper limit. The reduced images and data cubes are all available at https://www2.mpia-hd.mpg.de/core/DATA/www File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file tablea.dat 91 120 Overview of the 120 positions tablee.dat 350 120 Molecular column densities derived with XCLASS -------------------------------------------------------------------------------- See also: https://www2.mpia-hd.mpg.de/core/DATA/www : CORE data Home Page Byte-by-byte Description of file: tablea.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Region Region 13- 14 I2 --- Number Position number 16- 17 I2 h RAh Right Ascension (J2000) 19- 20 I2 min RAm Right Ascension (J2000) 22- 26 F5.2 s RAs Right Ascension (J2000) 28 A1 --- DE- Declination sign (J2000) 29- 30 I2 deg DEd Declination (J2000) 32- 33 I2 arcmin DEm Declination (J2000) 35- 38 F4.1 arcsec DEs Declination (J2000) 40- 44 F5.1 km/s vLSR Systemic velocity 46- 49 F4.2 K sigmaline Noise in the spectral line data 51- 55 F5.1 K Tkin Kinetic temperature 57- 60 F4.1 K e_Tkin Kinetic temperature error 62- 67 F6.2 mJy/beam Int 1.37mm continuum intensity 69- 75 E7.1 --- tau Continuum optical depth 77- 83 E7.1 cm-2 N(H2) Molecular hydrogen column density 85- 91 E7.1 cm-2 e_N(H2) Molecular hydrogen column density error -------------------------------------------------------------------------------- Byte-by-byte Description of file: tablee.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 11 A11 --- Region Region 13- 14 I2 --- Number Position number 16- 22 E7.1 cm-2 N(13CO) 13CO column density 24- 30 E7.1 cm-2 e_N(13CO) 13CO column density lower error 32- 38 E7.1 cm-2 E_N(13CO) 13CO column density upper error 40- 46 E7.1 cm-2 N(C18O) C18O column density 48- 54 E7.1 cm-2 e_N(C18O) C18O column density lower error 56- 62 E7.1 cm-2 E_N(C18O) C18O column density upper error 63 A1 --- l_N(SO) Limit flag on N(SO) 64- 70 E7.1 cm-2 N(SO) SO column density 72- 78 E7.1 cm-2 e_N(SO) ? SO column density lower error 80- 86 E7.1 cm-2 E_N(SO) ? SO column density upper error 87 A1 --- l_N(OCS) Limit flag on N(OCS) 88- 94 E7.1 cm-2 N(OCS) OCS column density 96-102 E7.1 cm-2 e_N(OCS) ? OCS column density lower error 104-110 E7.1 cm-2 E_N(OCS) ? OCS column density upper error 111 A1 --- l_N(SO2) Limit flag on N(SO2) 112-118 E7.1 cm-2 N(SO2) SO2 column density 120-126 E7.1 cm-2 e_N(SO2) ? SO2 column density lower error 128-134 E7.1 cm-2 E_N(SO2) ? SO2 column density upper error 135 A1 --- l_N(DCN) Limit flag on N(DCN) 136-142 E7.1 cm-2 N(DCN) DCN column density 144-150 E7.1 cm-2 e_N(DCN) ? DCN column density lower error 152-158 E7.1 cm-2 E_N(DCN) ? DCN column density upper error 159 A1 --- l_N(H2CO) Limit flag on N(H2CO) 160-166 E7.1 cm-2 N(H2CO) H2CO column density 168-174 E7.1 cm-2 e_N(H2CO) ? H2CO column density lower error 176-182 E7.1 cm-2 E_N(H2CO) ? H2CO column density upper error 183 A1 --- l_N(HNCO) Limit flag on N(HNCO) 184-190 E7.1 cm-2 N(HNCO) HNCO column density 192-198 E7.1 cm-2 e_N(HNCO) ? HNCO column density lower error 200-206 E7.1 cm-2 E_N(HNCO) ? HNCO column density upper error 207 A1 --- l_N(HC3N) Limit flag on N(HC3N) 208-214 E7.1 cm-2 N(HC3N) HC3N column density 216-222 E7.1 cm-2 e_N(HC3N) ? HC3N column density lower error 224-230 E7.1 cm-2 E_N(HC3N) ? HC3N column density upper error 231 A1 --- l_N(HC3Nv7=1) Limit flag on N(HC3Nv7=1) 232-238 E7.1 cm-2 N(HC3Nv7=1) HC3N,v7=1 column density 240-246 E7.1 cm-2 e_N(HC3Nv7=1) ? HC3N,v7=1 column density lower error 248-254 E7.1 cm-2 E_N(HC3Nv7=1) ? HC3N,v7=1 column density upper error 255 A1 --- l_N(HC3Nv7=2) Limit flag on N(HC3Nv7=2) 256-262 E7.1 cm-2 N(HC3Nv7=2) HC3N,v7=2 column density 264-270 E7.1 cm-2 e_N(HC3Nv7=2) ? HC3N,v7=2 column density lower error 272-278 E7.1 cm-2 E_N(HC3Nv7=2) ? HC3N,v7=2 column density upper error 279 A1 --- l_N(CH3OH) Limit flag on N(CH3OH) 280-286 E7.1 cm-2 N(CH3OH) CH3OH column density 288-294 E7.1 cm-2 e_N(CH3OH) ? CH3OH column density lower error 296-302 E7.1 cm-2 E_N(CH3OH) ? CH3OH column density upper error 303 A1 --- l_N(CH3OHvt=1) Limit flag on N(CH3OHvt=1) 304-310 E7.1 cm-2 N(CH3OHvt=1) CH3OH,vt=1 column density 312-318 E7.1 cm-2 e_N(CH3OHvt=1) ? CH3OH,vt=1 column density lower error 320-326 E7.1 cm-2 E_N(CH3OHvt=1) ? CH3OH,vt=1 column density upper error 327 A1 --- l_N(CH3CN) Limit flag on N(CH3CHN) 328-334 E7.1 cm-2 N(CH3CN) CH3CN column density 336-342 E7.1 cm-2 e_N(CH3CN) ? CH3CN column density lower error 344-350 E7.1 cm-2 E_N(CH3CN) ? CH3CN column density upper error -------------------------------------------------------------------------------- Acknowledgements: Caroline Gieser, gieser(at)mpia.de
(End) Patricia Vannier [CDS] 25-Feb-2021
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line