J/A+A/659/A135 178 debris systems (Pearce+, 2022)
Planet populations inferred from debris discs. Insights from 178 debris systems
in the ISPY, LEECH, and LIStEN planet-hunting surveys.
Pearce T.D., Launhardt R., Ostermann R., Kennedy G.M., Gennaro M.,
Booth M., Krivov A.V., Cugno G., Henning T.K., Quirrenbach A.,
Barcucci A.M., Matthews E.C., Ruh H.L., Stone J.M.
<Astron. Astrophys., 659, A135 (2022)>
=2022A&A...659A.135P 2022A&A...659A.135P (SIMBAD/NED BibCode)
ADC_Keywords: Stars, double and multiple ; Exoplanets ; Stars, masses ;
Stars, ages ; Morphology ; Optical
Keywords: circumstellar matter - planet-disk interactions - planetary systems -
planets and satellites: fundamental parameters
Abstract:
We know little about the outermost exoplanets in planetary systems
because our detection methods are insensitive to moderate-mass planets
on wide orbits. However, debris discs can probe the outer-planet
population because dynamical modelling of observed discs can reveal
properties of perturbing planets. We use four sculpting and stirring
arguments to infer planet properties in 178 debris-disc systems from
the ISPY, LEECH, and LIStEN planet-hunting surveys. Similar analyses
are often conducted for individual discs, but we consider a large
sample in a consistent manner. We aim to predict the population of
wide-separation planets, gain insight into the formation and evolution
histories of planetary systems, and determine the feasibility of
detecting these planets in the near future. We show that a 'typical'
cold debris disc likely requires a Neptune- to Saturn-mass planet at
10-100 au, with some needing Jupiter-mass perturbers. Our predicted
planets are currently undetectable, but modest detection-limit
improvements (e.g. from JWST) should reveal many such perturbers. We
find that planets thought to be perturbing debris discs at late times
are similar to those inferred to be forming in protoplanetary discs,
so these could be the same population if newly formed planets do not
migrate as far as currently thought. Alternatively, young planets
could rapidly sculpt debris before migrating inwards, meaning that the
responsible planets are more massive (and located farther inwards)
than debris-disc studies assume. We combine self-stirring and
size-distribution modelling to show that many debris discs cannot be
self-stirred without having unreasonably high masses; planet- or
companion-stirring may therefore be the dominant mechanism in many
(perhaps all) debris discs. Finally, we provide catalogues of planet
predictions and identify promising targets for future planet searches.
Description:
We analysed 178 debris-disc systems in the ISPY, LEECH, and LIStEN
planet searches, using dynamical arguments to constrain the properties
of unseen planets from disc morphologies.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
tablea1.dat 254 178 System parameters used in this paper
tablea2.dat 182 178 Planet and debris disc constraints calculated
in this paper
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea1.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- System System name
12 A1 --- n_System [*] Note on System (1)
15- 28 A14 --- Name Other Name
30- 36 F7.3 pc Dist Distance
38- 44 F7.3 pc e_Dist Distance 1σ error
46- 51 F6.3 [Lsun] log10(L*) Stellar luminosity
53- 57 F5.3 [Lsun] e_log10(L*) Stellar luminosity 1σ error
59- 63 I5 K Teff Effective temperature
65- 67 I3 K e_Teff Effective temperature 1σ error
69- 73 F5.2 Msun M* Stellar mass
75- 78 F4.2 Msun E_M* Stellar mass 1σ error (upper value)
81- 84 F4.2 Msun e_M* Stellar mass 1σ error (lower value)
86- 89 I4 Myr t* Stellar age
91- 94 I4 Myr E_t* Stellar age 1σ error (upper value)
96- 99 I4 Myr e_t* Stellar age 1σ error (lower value)
101-105 F5.1 au rSED ? Corrected blackbody radius (for disc
location is estimated from SED data) (2)
107-111 F5.1 au e_rSED ? Corrected blackbody radius 1σ error
(for disc location is estimated from SED
data)
113-117 F5.1 au ai ? Disc inner edge (for disc resolved and
fitted with an axisymmetric model) (2)
119-122 F4.1 au E_ai ? ai 1σ error (upper value)
124-127 F4.1 au e_ai ? ai 1σ error (lower value)
129-131 A3 --- --- [--> ]
133-137 F5.1 au ao ? Disc outer edge (for disc resolved and
fitted with an axisymmetric model) (2)
138-142 F5.1 au E_ao ? ao 1σ error (upper value)
144-147 F4.1 au e_ao ? ao 1σ error (lower value)
149-153 F5.1 au qi ? Inner edge pericentre (for disc resolved
and fitted with an asymmetric model) (2)
155-158 F4.1 au E_qi ? qi 1σ error (upper value)
160-163 F4.1 au e_qi ? qi 1σ error (lower value)
164 A1 --- --- [,]
165-169 F5.1 au Qi ? Inner edge apocentre (for disc resolved
and fitted with an asymmetric model) (2)
171-174 F4.1 au E_Qi ? Qi 1σ error (upper value)
176-179 F4.1 au e_Qi ? Qi 1σ error (lower value)
181-183 A3 --- --- [--> ]
185-189 F5.1 au qo ? Outer edge pericentre (for disc resolved
and fitted with an asymmetric model) (2)
191-194 F4.1 au E_qo ? qo 1σ error (upper value)
196-199 F4.1 au e_qo ? qo 1σ error (lower value)
200 A1 --- --- [,]
201-205 F5.1 au Qo ? Outer edge apocentre (for disc resolved
and fitted with an asymmetric model) (2)
207-210 F4.1 au E_Qo ? Qo 1σ error (upper value)
212-215 F4.1 au e_Qo ? Qo 1σ error (lower value)
218-231 A14 --- DiscData Data source used to determine the debris disc
properties (plus PACS wavelength for
Herschel data)
233-254 A22 --- AgeRef Age reference(s) (3)
--------------------------------------------------------------------------------
Note (1): Note as follows:
* = systems where our stellar parameter estimates may be affected by
close binarity
Note (2): Disc location and extent parameters describes the location and shape
of the debris disc inner and outer edges:
if the disc is resolved and fitted with an asymmetric model, then the column
shows the inner edge pericentre, qi, inner edge apocentre, Qi, outer edge
pericentre, qo, and outer edge apocentre, Qo, as 'qi, Qi -> qo, Qo' .
Alternatively, if the disc is resolved and fitted with an axisymmetric model,
then the column shows the disc inner edge, ai, and outer edge, ao,
as 'ai -> ao'.
Finally, if the disc location is estimated from SED data, then only the
corrected blackbody radius is shown.
We note that if multiple discs are present, then this column refers to the
outermost disc.
Note (3): References considered in our age assignment; targets with high
probabilities of association membership have the association and age reference
shown (we also use association ages for seven targets with lower membership
probabilities, marked +),
Iso means our isochrone fit (performed for all targets but only quoted if no
other valid age estimates were available), and
References are as follows.
1 = Aguilera-Gomez et al. (2018A&A...614A..55A 2018A&A...614A..55A, Cat. J/A+A/614/A55)
2 = Bell et al. (2015MNRAS.454..593B 2015MNRAS.454..593B, Cat. J/MNRAS/454/593)
3 = Brandt & Huang (2015ApJ...807...24B 2015ApJ...807...24B)
4 = Casagrande et al. (2011A&A...530A.138C 2011A&A...530A.138C, Cat. J/A+A/530/A138)
5 = Chen et al. (2014ApJS..211...25C 2014ApJS..211...25C, Cat. J/ApJS/211/25)
6 = David & Hillenbrand (2015ApJ...804..146D 2015ApJ...804..146D, Cat. J/ApJ/804/146)
7 = Dobbie et al. (2010MNRAS.409.1002D 2010MNRAS.409.1002D)
8 = Eiroa et al. (2013A&A...555A..11E 2013A&A...555A..11E, Cat. J/A+A/555/A11)
9 = Elliott et al. (2016A&A...590A..13E 2016A&A...590A..13E, Cat. J/A+A/590/A13)
10 = Esposito et al. (2020AJ....160...24E 2020AJ....160...24E, Cat. J/AJ/160/24)
11 = Faramaz et al. (2019AJ....158..162F 2019AJ....158..162F)
12 = Gaspar et al. (2013ApJ...768...25G 2013ApJ...768...25G, Cat. J/ApJ/768/25)
13 = Gaspar et al. (2016ApJ...826..171G 2016ApJ...826..171G, cat. J/ApJ/826/171)
14 = Holland et al. (2017MNRAS.470.3606H 2017MNRAS.470.3606H)
15 = Jones et al. (2015ApJ...813...58J 2015ApJ...813...58J)
16 = Kains et al. (2011MNRAS.414.2486K 2011MNRAS.414.2486K)
17 = Lestrade et al. (2012A&A...548A..86L 2012A&A...548A..86L)
18 = MacGregor et al. (2018ApJ...869...75M 2018ApJ...869...75M)
19 = Mamajek & Hillenbrand (2008ApJ...687.1264M 2008ApJ...687.1264M, Cat. J/ApJ/687/1264)
20 = Mamajek et al. (2013AJ....146..154M 2013AJ....146..154M)
21 = Moor et al. (2009ApJ...700L..25M 2009ApJ...700L..25M)
22 = Moor et al. (2016ApJ...826..123M 2016ApJ...826..123M)
23 = Moro-Martin et al. (2015ApJ...801..143M 2015ApJ...801..143M, Cat. J/ApJ/801/143)
24 = Murphy & Lawson (2015MNRAS.447.1267M 2015MNRAS.447.1267M, Cat. J/MNRAS/447/1267)
25 = Nielsen et al. (2013ApJ...776....4N 2013ApJ...776....4N)
26 = Nielsen et al. (2019AJ....158...13N 2019AJ....158...13N, Cat. J/AJ/158/13)
27 = Nissen et al. (2020A&A...640A..81N 2020A&A...640A..81N, Cat. J/A+A/640/A81)
28 = Pecaut & Mamajek (2016MNRAS.461..794P 2016MNRAS.461..794P, Cat. J/MNRAS/461/794)
29 = Ramirez et al. (2012ApJ...756...46R 2012ApJ...756...46R, Cat. J/ApJ/756/46)
30 = Rieke et al. (2005ApJ...620.1010R 2005ApJ...620.1010R, Cat. J/ApJ/620/1010)
31 = Sierchio et al. (2014ApJ...785...33S 2014ApJ...785...33S, Cat. J/ApJ/785/33)
32 = Stanford-Moore et al. (2020ApJ...898...27S 2020ApJ...898...27S, Cat. J/ApJ/898/27)
33 = Stone et al. (2018AJ....156..286S 2018AJ....156..286S, Cat. J/AJ/156/286)
34 = Veyette & Muirhead (2018ApJ...863..166V 2018ApJ...863..166V)
35 = Vican (2012AJ....143..135V 2012AJ....143..135V, Cat. J/AJ/143/135)
36 = Weise et al. (2018AJ....155...48W 2018AJ....155...48W, cat. J/AJ/155/48)
37 = Zuckerman et al. (2006ApJ...649L.115Z 2006ApJ...649L.115Z)
38 = Zuckerman et al. (2011ApJ...732...61Z 2011ApJ...732...61Z)
39 = Zuckerman (2019ApJ...870...27Z 2019ApJ...870...27Z)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea2.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 11 A11 --- System System name
14- 19 F6.4 Mjup Mp Planet minimum mass that a single planet
requires to sculpt the disc inner edge
21- 26 F6.4 Mjup E_Mp Error on Mp (upper value)
28- 33 F6.4 Mjup e_Mp Error on Mp (lower value)
35- 39 F5.1 au ap Planet maximum semi-major axis that a single
planet requires to sculpt the disc
inner edge
41- 45 F5.1 au E_ap Error on ap (upper value)
47- 51 F5.1 au e_ap Error on ap (lower value)
53- 56 F4.2 --- ep ?=- Planet minimum eccentricity (1)
58- 61 F4.2 --- E_ep ? Error on ep (upper value)
63- 66 F4.2 --- e_ep ? Error on ep (lower value)
68- 73 F6.3 arcsec Qp Maximum apocentre distance that a single
planet requires to sculpt the disc
inner edge
75- 80 F6.3 arcsec E_Qp Error on Qp (upper limit)
81- 86 F6.3 arcsec e_Qp Error on Qp (lower limit)
88- 96 F9.7 Mjup Mpn Minimum mass that each individual planet
requires if instead multiple planets sculpt
the disc inner edge
98-106 F9.7 Mjup E_Mpn Error on Mpn (upper value)
109-117 F9.7 Mjup e_Mpn Error on Mpn (lower value)
118-123 F6.3 arcsec rPn Maximum projected separation of the outermost
planet in the multi-planet scenario
124-129 F6.3 arcsec E_rPn Error on rPn (upper value)
130-135 F6.3 arcsec e_rPn Error on rPn (lower value)
137-142 E6.2 Mjup Mpstir Minimum mass that a planet requires to stir
the disc, assuming the planet eccentricity
is ≤0.3
144-149 E6.2 Mjup E_Mpstir Error on Mpstir (upper value)
151-156 E6.2 Mjup e_Mpstir ? Error on Mpstir (lower value)
160-166 F7.2 Mgeo Mdiscstir ?=- Minimum mass that the disc requires to
self-stir (2)
168-174 F7.2 Mgeo E_Mdiscstir ? Error on Mdiscstir (upper value)
176-182 F7.2 Mgeo e_Mdiscstir ? Error on Mdiscstir (lower value)
--------------------------------------------------------------------------------
Note (1): a dash for ep means the planet is not required to be eccentric
because the disc model is axisymmetric.
Note (2): a dash means this value could not be calculated because no disc
width information was available.
--------------------------------------------------------------------------------
History:
From electronic version of the journal
(End) Patricia Vannier [CDS] 16-Aug-2022