J/A+A/663/A59       Low-Redshift Lyman Continuum Survey   (Saldana-Lopez+, 2022)
The Low-Redshift Lyman Continuum Survey. Unveiling the ISM properties of
low-z Lyman-continuum emitters.
    Saldana-Lopez A., Schaerer D., Chisholm J., Flury S.R., Jaskot A.E.,
    Worseck G., Makan K., Gazagnes S., Mauerhofer V., Verhamme A., Amorin R.O.,
    Ferguson H.C., Giavalisco M., Grazian A., Hayes M.J., Heckman T.M.,
    Henry A., Ji Z., Marques-Chaves R., McCandliss S.R., Oey M.S., Ostlin G.,
    Pentericci L., Thuan T.X., Trebitsch M., Vanzella E., Xu X.
   <Astron. Astrophys., 663, A59 (2022)>
   =2022A&A...663A..59S 2022A&A...663A..59S    (SIMBAD/NED BibCode)
ADC_Keywords: Galaxies ; Ultraviolet ; H I data ; Equivalent widths
Keywords: ISM: structure - dust, extinction - galaxies: ISM -
          galaxies: starburst - galaxies: stellar content -
          ultraviolet: galaxies
Abstract:
    Combining 66 ultraviolet (UV) spectra and ancillary data from the
    recent Low-Redshift Lyman Continuum Survey (LzLCS) and 23 LyC
    observations by earlier studies, we form a statistical sample of
    star-forming galaxies at z∼0.2-0.4 with which we study the role of
    cold interstellar medium (ISM) gas in the leakage of ionizing
    radiation. We also aim to establish empirical relations between the HI
    neutral and low-ionization state (LIS) absorption lines with different
    galaxy properties.
    We first constrain the massive star content (stellar ages and
    metallicities) and UV attenuation by fitting the stellar continuum
    with a combination of simple stellar population models. The models,
    together with accurate LyC flux measurements, allow us to determine
    the absolute LyC photon escape fraction for each galaxy
    (fescabsfescabs). We then measure the equivalent widths and
    residual fluxes of multiple HI and LIS lines, and the geometrical
    covering fraction of the UV emission, adopting the picket-fence model.
    The LyC escape fraction spans a wide range, with a median
    fescabsfescabs (0.16, 0.84 quantiles) of 0.04 (0.02, 0.20),
    and 50 out of the 89 galaxies detected in the LyC (1σ upper
    limits of fescabs≤0.01 for non-detections, typically). The HI and
    LIS line equivalent widths scale with the UV luminosity and
    attenuation, and inversely with the residual flux of these lines.
    Additionally, Lyα equivalent widths scale with both the HI and
    LIS residual fluxes, but anti-correlate with the corresponding HI or
    LIS equivalent widths. The HI and LIS residual fluxes are correlated,
    indicating that the neutral gas is spatially traced by the
    low-ionization transitions. We find that the observed trends of the
    absorption lines and the UV attenuation are primarily driven by the
    geometric covering fraction of the gas. The observed nonuniform gas
    coverage also demonstrates that LyC photons escape through
    low-column-density channels in theISM. The equivalent widths and
    residual fluxes of both the HI and LIS lines strongly correlate with
    fescabs : strong LyC leakers (highest fescabs) show weak
    absorption lines, low UV attenuation, and large Lyα equivalent
    widths. We provide several empirical calibrations to estimate
    fescabs from UV absorption lines. Finally, we show that
    simultaneous UV absorption line and dust attenuation measurements can,
    in general, predict the escape fraction of galaxies. We apply our
    method to available measurements of UV LIS lines of 15 star-forming
    galaxies at z∼4-6 (plus 3 high-z galaxy composites), finding that
    these high-redshift, UV-bright galaxies (MUV≤-21) may have low
    escape fractions, fescabs≤0.1.
    UV absorption lines trace the coldISM gas of galaxies, which governs
    the physics of the LyC escape. We show that, with some assumptions,
    the absolute LyC escape can be statistically predicted using UV
    absorption lines, and the method can be applied to study galaxies
    across a wide redshift range, including in the epoch of cosmic
    reionization.
Description:
    We use UV spectra in the observed frame wavelength range 800-1950Å
    from the Low-Redshift Lyman Continuum Survey (LzLCS, Flury et al.,
    2022ApJS..260....1F 2022ApJS..260....1F, Cat. J/ApJS/260/1), the most comprehensive
    spectroscopic campaign so far to trace the LyC emission of galaxies in
    the nearby Universe (z∼0.3). In addition, we include and reanalyze
    previous LyC emitters from the studies of Izotov et al.
    (2016Natur.529..178I 2016Natur.529..178I, 2016MNRAS.461.3683I 2016MNRAS.461.3683I, 2018MNRAS.474.4514I 2018MNRAS.474.4514I,
    2018MNRAS.478.4851I 2018MNRAS.478.4851I, 2021MNRAS.503.1734I 2021MNRAS.503.1734I) and Wang et al.
    (2019ApJ...885...57W 2019ApJ...885...57W) as a comparison sample. For all the sources, we
    also use ancillary data derived in a homogeneous fashion by the LzLCS
    team.
File Summary:
--------------------------------------------------------------------------------
 FileName    Lrecl  Records   Explanations
--------------------------------------------------------------------------------
ReadMe          80        .   This file
tablea1.dat    108       66   UV-SED fits results for the LzLCS sample
tablea2.dat     97       66   Absorption lines results for the LzLCS sample
tablea3.dat    108       23  *UV-SED fits results for the literature sample
tablea4.dat     97       23  *Absorption lines results for the literature sample
--------------------------------------------------------------------------------
Note on tablea3.dat,tablea4.dat: Izotov et al. (2016Natur.529..178I 2016Natur.529..178I,
  2016MNRAS.461.3683I 2016MNRAS.461.3683I, 2018MNRAS.474.4514I 2018MNRAS.474.4514I, 2018MNRAS.478.4851I 2018MNRAS.478.4851I,
  2021MNRAS.503.1734I 2021MNRAS.503.1734I) and Wang et al.  (2019ApJ...885...57W 2019ApJ...885...57W).
--------------------------------------------------------------------------------
See also:
 J/ApJS/260/1 : Low-redshift Lyman Continuum Survey (LzLCS). I. (Flury+, 2022)
Byte-by-byte Description of file: tablea1.dat tablea3.dat
--------------------------------------------------------------------------------
   Bytes Format Units   Label     Explanations
--------------------------------------------------------------------------------
   1- 14  A14   ---     Name      Object name
  16- 25  A10   ---     LyCtype   Object type (strong, weak or nonleaker)
  27- 32  F6.4  ---     z         Redshift
  34- 38  F5.3  mag     E(B-V)    UV dust-attenuation parameter E(B-V)
  40- 44  F5.3  mag   e_E(B-V)    UV dust-attenuation parameter E(B-V) error
  46- 49  F4.2  Myr     Age       Light-weighted stellar age
  51- 54  F4.2  Myr   e_Age       Light-weighted stellar age error
  56- 59  F4.2  Sun     Z         Light-weighted stellar metallicity
  61- 64  F4.2  Sun   e_Z         Light-weighted stellar metallicity error
  66- 67  A2    ---   l_fabsesc   [≤ ] Limit flag on fabsesc
  68- 72  F5.3  ---     fabsesc   LyC absolute photon escape fraction
  74- 78  F5.3  ---   E_fabsesc   ? Error on fabsesc (upper value)
  80- 84  F5.3  ---   e_fabsesc   ? Error on fabsesc (lower value)
  86- 91  F6.2  mag     Mint1500  Intrinic dust corrected absolute magnitude
                                   at 1500Å (AB)
  93- 96  F4.2  mag   e_Mint1500  Intrinic dust corrected absolute magnitude
                                   at 1500Å (AB) error
  98-103  F6.2  mag     Mobs1500  Observed UV absolute magnitude
                                   at 1500Å (AB)
 105-108  F4.2  mag   e_Mobs1500  Observed UV absolute magnitude
                                  at 1500Å (AB) error
--------------------------------------------------------------------------------
Byte-by-byte Description of file: tablea2.dat tablea4.dat
--------------------------------------------------------------------------------
  Bytes Format Units   Label      Explanations
--------------------------------------------------------------------------------
  1- 14  A14   ---     Name       Object name
 16- 25  A10   ---     LyCtype    Object type (strong, weak or nonleaker)
 27- 32  F6.4  ---     z          Redshift
 34- 37  F4.2  0.1nm   WHI        Weighted-average HI equivalent width
 39- 42  F4.2  0.1nm e_WHI        Weighted-average HI equivalent width error
 44- 48  F5.2  0.1nm   WLIS       Weighted-average LIS equivalent width
 50- 53  F4.2  0.1nm e_WLIS       Weighted-average LIS equivalent width error
 55- 58  F4.2  ---     RHI        ?=- Weighted-average HI residual flux (Cf(HI))
 60- 63  F4.2  ---   e_RHI        ?=- Weighted-average HI residual flux error
 65- 68  F4.2  ---     RLIS       ?=- Weighted-average LIS residual flux
                                   (Cf(LIS))
 70- 73  F4.2  ---   e_RLIS       ?=- Weighted-average LIS residual flux error
 75- 79  F5.3  ---     fabsescHI  ?=- Lyman series derived absolute photon
                                   escape fraction
 81- 85  F5.3  ---   e_fabsescHI  ?=- Lyman series derived absolute photon
                                   escape fraction error
 87- 91  F5.3  ---     fabsescLIS ?=- LIS derived absolute photon
                                   escape fraction
 93- 97  F5.3  ---   e_fabsescLIS ?=- LIS derived absolute photon
                                   escape fraction error
--------------------------------------------------------------------------------
History:
    From electronic version of the journal
(End)                                      Patricia Vannier [CDS]    24-Nov-2022