J/A+A/664/A161 28 planet-hosting stars parameters (Biazzo+, 2022)
The GAPS Programme at TNG.
XXXV. Fundamental properties of transiting exoplanet host stars.
Biazzo K., D'Orazi V., Desidera S., Turrini D., Benatti S., Gratton R.,
Magrini L., Sozzetti A., Baratella M., Bonomo A.S., Borsa F., Claudi R.,
Covino E., Damasso M., Di Mauro M.P., Lanza A.F., Maggio A., Malavolta L.,
Maldonado J., Marzari F., Micela G., Poretti E., Vitello F., Affer L.,
Bignamini A., Carleo I., Cosentino R., Fiorenzano A.F.M., Giacobbe P.,
Harutyunyan A., Leto G., Mancini L., Molinari E., Molinaro M.,
Nardiello D., Nascimbeni V., Pagano I., Pedani M., Piotto G., Rainer M.,
Scandariato G.
<Astron. Astrophys. 664, A161 (2022)>
=2022A&A...664A.161B 2022A&A...664A.161B (SIMBAD/NED BibCode)
ADC_Keywords: Stars, fundamental ; Abundances ; Spectroscopy ; Optical
Keywords: stars: abundances - stars: fundamental parameters -
techniques: spectroscopic - planetary systems
Abstract:
Exoplanetary properties strongly depend on stellar properties: to know
the planet with accuracy and precision it is necessary to know the
star as accurately and precisely as possible.
Our immediate aim is to characterize in a homogeneous and accurate way
a sample of 27 transiting planet-hosting stars observed within the
Global Architecture of Planetary System program. For the wide visual
binary XO-2, we considered both components (N: hosting a transiting
planet; S: without a known transiting planet). Our final goal is to
widely analyze the sample by deriving several stellar properties,
abundances of many elements, kinematic parameters, and discuss them in
the context of planetary formation.
We determined the stellar parameters (effective temperature, surface
gravity, rotational velocity) and abundances of 26 elements (Li, C, N,
O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Mn, Co, Ni, Cu, Zn, Y,
Zr, Ba, La, Nd, Eu). Our study is based on high-resolution HARPS-N at
TNG and FEROS at ESO spectra and uniform techniques. Depending on
stellar parameters and chemical elements, we used line equivalent
widths or spectral synthesis methods. We derived kinematic properties
taking advantage of Gaia data and for the first time in exoplanet host
stars we estimated ages using elemental ratios as chemical clocks.
The effective temperature of our stars is around 4400-6700K, while
the iron abundance [Fe/H] is within -0.3 and 0.4dex. Lithium is
present in seven stars. The [X/H] and [X/Fe] abundances versus [Fe/H]
are consistent with the Galactic chemical evolution. The dependence of
[X/Fe] with the condensation temperature is critically analyzed with
respect to stellar and kinematic properties. All targets with measured
C and O abundances show C/O<0.8, compatible with Si present in
rock-forming minerals. Mean C/O and [C/O] values are slightly lower
than for the Sun. Most of targets show 1.0<Mg/Si<1.5, compatible with
Mg distributed between olivine and pyroxene, and mean Mg/Si lower than
for the Sun. HAT-P-26, the target hosting the lowest-mass planet,
shows the highest Mg/Si ratio. From our chemodynamical analysis we
find agreement between ages and position within the Galactic disk.
Finally, we note a tendency for higher-density planets to be around
metal-rich stars and hints of higher stellar abundances of some
volatiles (e.g., O) for lower-mass planets. We cannot exclude that
part of our results could be also related to the location of the stars
within the Galactic disk.
We try to trace the planetary migration scenario from the composition
of the planets related to the chemical composition of the hosting
stars. This kind of study will be useful for upcoming space mission
data to get more insights into the formation-migration mechanisms.
Description:
We list for 28 planet-hosting stars the effective temperature, surface
gravity, microturbulence velocity, macroturbulence velocity, projected
rotational velocity, and abundances of the following 26 elements: Li,
C, N, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Mn, Co, Ni, Cu, Zn,
Y, Zr, Ba, La, Nd ,Eu. For three elements (Fe, Cr, Ti) we measured the
abundances of two ionization states.
File Summary:
--------------------------------------------------------------------------------
FileName Lrecl Records Explanations
--------------------------------------------------------------------------------
ReadMe 80 . This file
targets.dat 382 28 Final stellar parameters (table 1) and stellar
kinematic properties as derived in the present
work (table A2)
--------------------------------------------------------------------------------
Byte-by-byte Description of file: targets.dat
--------------------------------------------------------------------------------
Bytes Format Units Label Explanations
--------------------------------------------------------------------------------
1- 8 A8 --- Name Object Name
10- 13 I4 K Teff Effective temperature
15- 16 I2 K e_Teff Error in effective temperature
18- 21 F4.2 [cm/s2] logg Surface gravity
23- 26 F4.2 [cm/s2] e_logg Error in surface gravity
28- 31 F4.2 km/s xi Microturbulence velocity
33- 36 F4.2 km/s e_xi Error in microturbulence velocity
38- 42 F5.2 --- [FeI/H] FeI abundance
44- 47 F4.2 --- e_[FeI/H] Error in FeI abundance
49- 53 F5.2 --- [FeII/H] FeII abundance
55- 58 F4.2 --- e_[FeII/H] Error in FeII abundance
60- 62 F3.1 km/s Vmacro Macroturbulence velocity
64- 66 F3.1 km/s vsini Projected rotational velocity
68- 70 F3.1 km/s e_vsini Error in projected rotational velocity
72 A1 --- l_lognLi Limit flag on lognLi
73- 76 F4.2 --- lognLi ? Lithium abundance
78- 81 F4.2 --- e_lognLi ? Error in lithium abundance
83- 90 F8.4 km/s RV Mean radial velocity
92- 96 F5.3 km/s e_RV Error in mean radial velocity
98-102 F5.2 --- [C/H] ? CI abundance
104-107 F4.2 --- e_[C/H] ? Error in CI abundance
109-113 F5.2 --- [N/H] ? NI abundance
115-118 F4.2 --- e_[N/H] ? Error in NI abundance
120-124 F5.2 --- [O/H] ? OI abundance
126-129 F4.2 --- e_[O/H] ? Error in OI abundance
131-135 F5.2 --- [Na/H] ? NaI abundance
137-140 F4.2 --- e_[Na/H] ? Error in NaI abundance
142-146 F5.2 --- [Mg/H] ? MgI abundance
148-151 F4.2 --- e_[Mg/H] Error in MgI abundance
153-157 F5.2 --- [Al/H] AlI abundance
159-162 F4.2 --- e_[Al/H] Error in AlI abundance
164-168 F5.2 --- [Si/H] SiI abundance
170-173 F4.2 --- e_[Si/H] Error in SiI abundance
175-179 F5.2 --- [S/H] ? SI abundance
181-184 F4.2 --- e_[S/H] ? Error in SI abundance
186-190 F5.2 --- [Ca/H] ? CaI abundance
192-195 F4.2 --- e_[Ca/H] Error in CaI abundance
197-201 F5.2 --- [Sc/H] ScII abundance
203-206 F4.2 --- e_[Sc/H] Error in ScII abundance
208-212 F5.2 --- [TiI/H] TiI abundance
214-217 F4.2 --- e_[TiI/H] Error in TiI abundance
219-223 F5.2 --- [TiII/H] TiII abundance
225-228 F4.2 --- e_[TiII/H] Error in TiII abundance
230-234 F5.2 --- [V/H] VI abundance
236-239 F4.2 --- e_[V/H] Error in VI abundance
241-245 F5.2 --- [CrI/H] CrI abundance
247-250 F4.2 --- e_[CrI/H] Error in CrI abundance
252-256 F5.2 --- [CrII/H] CrII abundance
258-261 F4.2 --- e_[CrII/H] Error in CrII abundance
263-267 F5.2 --- [Mn/H] ? MnI abundance
269-272 F4.2 --- e_[Mn/H] ? Error in MnI abundance
274-278 F5.2 --- [Co/H] ? CoI abundance
280-283 F4.2 --- e_[Co/H] Error in CoI abundance
285-289 F5.2 --- [Ni/H] NiI abundance
291-294 F4.2 --- e_[Ni/H] Error in NiI abundance
296-300 F5.2 --- [Cu/H] CuI abundance
302-305 F4.2 --- e_[Cu/H] Error in CuI abundance
307-311 F5.2 --- [Zn/H] ? ZnI abundance
313-316 F4.2 --- e_[Zn/H] ? Error in ZnI abundance
318-322 F5.2 --- [Y/H] YII abundance
324-327 F4.2 --- e_[Y/H] Error in YII abundance
329-333 F5.2 --- [Zr/H] ? ZrII abundance
335-338 F4.2 --- e_[Zr/H] ? Error in ZrII abundance
340-344 F5.2 --- [Ba/H] BaII abundance
346-349 F4.2 --- e_[Ba/H] Error in BaII abundance
351-355 F5.2 --- [La/H] ? LaII abundance
357-360 F4.2 --- e_[La/H] ? Error in LaII abundance
362-366 F5.2 --- [Nd/H] NaII abundance
368-371 F4.2 --- e_[Nd/H] Error in NdII abundance
373-377 F5.2 --- [Eu/H] ? EuII abundance
379-382 F4.2 --- e_[Eu/H] ? Error in EuII abundance
---------------------------------------------------------------
Acknowledgements:
Katia Biazzo, katia.biazzo(at)inaf.it
References:
Covino et al., Paper I 2013A&A...554A..28C 2013A&A...554A..28C, Cat. J/A+A/554/A28
Desidera et al., Paper II 2013A&A...554A..29D 2013A&A...554A..29D
Esposito et al., Paper III 2014A&A...564L..13E 2014A&A...564L..13E
Desidera et al., Paper IV 2014A&A...567L...6D 2014A&A...567L...6D
Damasso et al., Paper V 2015A&A...575A.111D 2015A&A...575A.111D, Cat. J/A+A/575/A111
Sozzetti et al., Paper VI 2015A&A...575L..15S 2015A&A...575L..15S, Cat. J/A+A/575/L15
Borsa et al., Paper VII 2015A&A...578A..64B 2015A&A...578A..64B, Cat. J/A+A/578/A64
Mancini et al., Paper VIII 2015A&A...579A.136M 2015A&A...579A.136M, Cat. J/A+A/579/A136
Damasso et al., Paper IX 2015A&A...581L...6D 2015A&A...581L...6D
Biazzo et al., Paper X 2015A&A...583A.135B 2015A&A...583A.135B, Cat. J/A+A/583/A135
Malavolta et al., Paper XI 2016A&A...588A.118M 2016A&A...588A.118M, Cat. J/A+A/588/A118
Benatti et al., Paper XII 2017A&A...599A..90B 2017A&A...599A..90B, Cat. J/A+A/599/A90
Esposito et al., Paper XIII 2017A&A...601A..53E 2017A&A...601A..53E
Bonomo et al., Paper XIV 2017A&A...602A.107B 2017A&A...602A.107B, Cat. J/A+A/602/A107
Gonzalez-Alvarez et al., Paper XV 2017A&A...606A..51G 2017A&A...606A..51G
Mancini et al., Paper XVI 2018A&A...613A..41M 2018A&A...613A..41M, Cat. J/A+A/613/A41
Lanza et al., Paper XVII 2018A&A...616A.155L 2018A&A...616A.155L, Cat. J/A+A/616/A155
Barbato et al., Paper XVIII 2019A&A...621A.110B 2019A&A...621A.110B, Cat. J/A+A/621/A110
Borsa et al., Paper XIX 2019A&A...631A..34B 2019A&A...631A..34B, Cat. J/A+A/631/A34
Pino et al., Paper XX 2020ApJ...894L..27P 2020ApJ...894L..27P
Carleo et al., Paper XXI 2020A&A...638A...5C 2020A&A...638A...5C, Cat. J/A+A/638/A5
Guilluy et al., Paper XXII 2020A&A...639A..49G 2020A&A...639A..49G
Benatti et al., Paper XXIII 2020A&A...639A..50B 2020A&A...639A..50B, Cat. J/A+A/639/A50
Barbato et al., Paper XXIV 2020A&A...641A..68B 2020A&A...641A..68B
Baratella et al., Paper XXV 2020A&A...640A.123B 2020A&A...640A.123B
Di Maio et al., Paper XXVI 2020A&A...641A..68B 2020A&A...641A..68B
Damasso et al., Paper XXVII 2020A&A...642A.133D 2020A&A...642A.133D, Cat. J/A+A/642/A133
Carleo et al., Paper XXVIII 2021A&A...645A..71C 2021A&A...645A..71C
Scandariato et al., Paper XXIX 2021A&A...646A.159S 2021A&A...646A.159S
Rainer et al., Paper XXX 2021A&A...649A..29R 2021A&A...649A..29R
Borsa et al., Paper XXXI 2021A&A...653A.104B 2021A&A...653A.104B
Fossati et al., Paper XXXII 2022A&A...658A.136F 2022A&A...658A.136F
Borsa et al., Paper XXXIII 2022A&A...663A.141B 2022A&A...663A.141B
Maldonado et al., Paper XXXIV 2022A&A...663A.142M 2022A&A...663A.142M
Mancini et al., Paper XXXVI 2022A&A...664A.162M 2022A&A...664A.162M, Cat. J/A+A/664/A162
Nardiello et al., Paper XXXVII 2022A&A...664A.163N 2022A&A...664A.163N, Cat. J/A+A/664/A163
Guilluy et al., Paper XXXVIII 2022A&A...665A.104G 2022A&A...665A.104G
Carleo et al., Paper XXXIX 2022AJ....164..101C 2022AJ....164..101C
Naponiello et al., Paper XL 2022A&A...667A...8N 2022A&A...667A...8N
Pino et al., Paper XLI 2022A&A...668A.176P 2022A&A...668A.176P
Damasso et al., Paper XLII 2023A&A...672A.126D 2023A&A...672A.126D
Maldonado et al., Paper XLIII 2023A&A...674A.132M 2023A&A...674A.132M
Rainer et al., Paper XLIV 2023A&A...676A..90R 2023A&A...676A..90R, Cat. J/A+A/676/A90
Fossati et al., Paper XLV 2023A&A...676A..99F 2023A&A...676A..99F
Pinamonti et al., Paper XLVI 2023A&A...677A.122P 2023A&A...677A.122P, Cat. J/A+A/677/A122
Sozzetti et al., Paper XLVII 2023A&A...677L..15S 2023A&A...677L..15S
Turrini et al., Paper XLVIII 2023A&A...679A..55T 2023A&A...679A..55T
Mantovan et al., Paper XLIX 2024A&A...682A.129M 2024A&A...682A.129M, Cat. J/A+A/682/A129
Carleo et al., Paper L 2024A&A...682A.135C 2024A&A...682A.135C
Claudi et al., Paper LI 2024A&A...682A.136C 2024A&A...682A.136C
Di Maio et al., Paper LII 2024A&A...683A.239D 2024A&A...683A.239D
Ruggieri et al., Paper LIII 2024A&A...684A.116R 2024A&A...684A.116R, Cat. J/A+A/684/A116
Guilluy et al., Paper LIV 2024A&A...686A..83G 2024A&A...686A..83G
Basilicata et al., Paper LV 2024A&A...686A.127B 2024A&A...686A.127B
Sicilia et al., Paper LVI 2024A&A...687A.143S 2024A&A...687A.143S
Montalto et al., Paper LVII 2024A&A...687A.226M 2024A&A...687A.226M, Cat. J/A+A/687/A226
Ruggieri et al., Paper LVIII 2024A&A...689A.235R 2024A&A...689A.235R, Cat. J/A+A/689/A235
Damasso et al., Paper LIX 2024A&A...690A.235D 2024A&A...690A.235D, Cat. J/A+A/690/A235
D'Arpa et al., Paper LX 2024A&A...690A.237D 2024A&A...690A.237D
Filomeno et al., Paper LXI 2024A&A...690A.370F 2024A&A...690A.370F
(End) Patricia Vannier [CDS] 29-Jan-2026