J/A+A/664/A161      28 planet-hosting stars parameters           (Biazzo+, 2022)

The GAPS Programme at TNG. XXXV. Fundamental properties of transiting exoplanet host stars. Biazzo K., D'Orazi V., Desidera S., Turrini D., Benatti S., Gratton R., Magrini L., Sozzetti A., Baratella M., Bonomo A.S., Borsa F., Claudi R., Covino E., Damasso M., Di Mauro M.P., Lanza A.F., Maggio A., Malavolta L., Maldonado J., Marzari F., Micela G., Poretti E., Vitello F., Affer L., Bignamini A., Carleo I., Cosentino R., Fiorenzano A.F.M., Giacobbe P., Harutyunyan A., Leto G., Mancini L., Molinari E., Molinaro M., Nardiello D., Nascimbeni V., Pagano I., Pedani M., Piotto G., Rainer M., Scandariato G. <Astron. Astrophys. 664, A161 (2022)> =2022A&A...664A.161B 2022A&A...664A.161B (SIMBAD/NED BibCode)
ADC_Keywords: Stars, fundamental ; Abundances ; Spectroscopy ; Optical Keywords: stars: abundances - stars: fundamental parameters - techniques: spectroscopic - planetary systems Abstract: Exoplanetary properties strongly depend on stellar properties: to know the planet with accuracy and precision it is necessary to know the star as accurately and precisely as possible. Our immediate aim is to characterize in a homogeneous and accurate way a sample of 27 transiting planet-hosting stars observed within the Global Architecture of Planetary System program. For the wide visual binary XO-2, we considered both components (N: hosting a transiting planet; S: without a known transiting planet). Our final goal is to widely analyze the sample by deriving several stellar properties, abundances of many elements, kinematic parameters, and discuss them in the context of planetary formation. We determined the stellar parameters (effective temperature, surface gravity, rotational velocity) and abundances of 26 elements (Li, C, N, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Mn, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Nd, Eu). Our study is based on high-resolution HARPS-N at TNG and FEROS at ESO spectra and uniform techniques. Depending on stellar parameters and chemical elements, we used line equivalent widths or spectral synthesis methods. We derived kinematic properties taking advantage of Gaia data and for the first time in exoplanet host stars we estimated ages using elemental ratios as chemical clocks. The effective temperature of our stars is around 4400-6700K, while the iron abundance [Fe/H] is within -0.3 and 0.4dex. Lithium is present in seven stars. The [X/H] and [X/Fe] abundances versus [Fe/H] are consistent with the Galactic chemical evolution. The dependence of [X/Fe] with the condensation temperature is critically analyzed with respect to stellar and kinematic properties. All targets with measured C and O abundances show C/O<0.8, compatible with Si present in rock-forming minerals. Mean C/O and [C/O] values are slightly lower than for the Sun. Most of targets show 1.0<Mg/Si<1.5, compatible with Mg distributed between olivine and pyroxene, and mean Mg/Si lower than for the Sun. HAT-P-26, the target hosting the lowest-mass planet, shows the highest Mg/Si ratio. From our chemodynamical analysis we find agreement between ages and position within the Galactic disk. Finally, we note a tendency for higher-density planets to be around metal-rich stars and hints of higher stellar abundances of some volatiles (e.g., O) for lower-mass planets. We cannot exclude that part of our results could be also related to the location of the stars within the Galactic disk. We try to trace the planetary migration scenario from the composition of the planets related to the chemical composition of the hosting stars. This kind of study will be useful for upcoming space mission data to get more insights into the formation-migration mechanisms. Description: We list for 28 planet-hosting stars the effective temperature, surface gravity, microturbulence velocity, macroturbulence velocity, projected rotational velocity, and abundances of the following 26 elements: Li, C, N, O, Na, Mg, Al, Si, S, Ca, Sc, Ti, V, Cr, Fe, Mn, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Nd ,Eu. For three elements (Fe, Cr, Ti) we measured the abundances of two ionization states. File Summary: -------------------------------------------------------------------------------- FileName Lrecl Records Explanations -------------------------------------------------------------------------------- ReadMe 80 . This file targets.dat 382 28 Final stellar parameters (table 1) and stellar kinematic properties as derived in the present work (table A2) -------------------------------------------------------------------------------- Byte-by-byte Description of file: targets.dat -------------------------------------------------------------------------------- Bytes Format Units Label Explanations -------------------------------------------------------------------------------- 1- 8 A8 --- Name Object Name 10- 13 I4 K Teff Effective temperature 15- 16 I2 K e_Teff Error in effective temperature 18- 21 F4.2 [cm/s2] logg Surface gravity 23- 26 F4.2 [cm/s2] e_logg Error in surface gravity 28- 31 F4.2 km/s xi Microturbulence velocity 33- 36 F4.2 km/s e_xi Error in microturbulence velocity 38- 42 F5.2 --- [FeI/H] FeI abundance 44- 47 F4.2 --- e_[FeI/H] Error in FeI abundance 49- 53 F5.2 --- [FeII/H] FeII abundance 55- 58 F4.2 --- e_[FeII/H] Error in FeII abundance 60- 62 F3.1 km/s Vmacro Macroturbulence velocity 64- 66 F3.1 km/s vsini Projected rotational velocity 68- 70 F3.1 km/s e_vsini Error in projected rotational velocity 72 A1 --- l_lognLi Limit flag on lognLi 73- 76 F4.2 --- lognLi ? Lithium abundance 78- 81 F4.2 --- e_lognLi ? Error in lithium abundance 83- 90 F8.4 km/s RV Mean radial velocity 92- 96 F5.3 km/s e_RV Error in mean radial velocity 98-102 F5.2 --- [C/H] ? CI abundance 104-107 F4.2 --- e_[C/H] ? Error in CI abundance 109-113 F5.2 --- [N/H] ? NI abundance 115-118 F4.2 --- e_[N/H] ? Error in NI abundance 120-124 F5.2 --- [O/H] ? OI abundance 126-129 F4.2 --- e_[O/H] ? Error in OI abundance 131-135 F5.2 --- [Na/H] ? NaI abundance 137-140 F4.2 --- e_[Na/H] ? Error in NaI abundance 142-146 F5.2 --- [Mg/H] ? MgI abundance 148-151 F4.2 --- e_[Mg/H] Error in MgI abundance 153-157 F5.2 --- [Al/H] AlI abundance 159-162 F4.2 --- e_[Al/H] Error in AlI abundance 164-168 F5.2 --- [Si/H] SiI abundance 170-173 F4.2 --- e_[Si/H] Error in SiI abundance 175-179 F5.2 --- [S/H] ? SI abundance 181-184 F4.2 --- e_[S/H] ? Error in SI abundance 186-190 F5.2 --- [Ca/H] ? CaI abundance 192-195 F4.2 --- e_[Ca/H] Error in CaI abundance 197-201 F5.2 --- [Sc/H] ScII abundance 203-206 F4.2 --- e_[Sc/H] Error in ScII abundance 208-212 F5.2 --- [TiI/H] TiI abundance 214-217 F4.2 --- e_[TiI/H] Error in TiI abundance 219-223 F5.2 --- [TiII/H] TiII abundance 225-228 F4.2 --- e_[TiII/H] Error in TiII abundance 230-234 F5.2 --- [V/H] VI abundance 236-239 F4.2 --- e_[V/H] Error in VI abundance 241-245 F5.2 --- [CrI/H] CrI abundance 247-250 F4.2 --- e_[CrI/H] Error in CrI abundance 252-256 F5.2 --- [CrII/H] CrII abundance 258-261 F4.2 --- e_[CrII/H] Error in CrII abundance 263-267 F5.2 --- [Mn/H] ? MnI abundance 269-272 F4.2 --- e_[Mn/H] ? Error in MnI abundance 274-278 F5.2 --- [Co/H] ? CoI abundance 280-283 F4.2 --- e_[Co/H] Error in CoI abundance 285-289 F5.2 --- [Ni/H] NiI abundance 291-294 F4.2 --- e_[Ni/H] Error in NiI abundance 296-300 F5.2 --- [Cu/H] CuI abundance 302-305 F4.2 --- e_[Cu/H] Error in CuI abundance 307-311 F5.2 --- [Zn/H] ? ZnI abundance 313-316 F4.2 --- e_[Zn/H] ? Error in ZnI abundance 318-322 F5.2 --- [Y/H] YII abundance 324-327 F4.2 --- e_[Y/H] Error in YII abundance 329-333 F5.2 --- [Zr/H] ? ZrII abundance 335-338 F4.2 --- e_[Zr/H] ? Error in ZrII abundance 340-344 F5.2 --- [Ba/H] BaII abundance 346-349 F4.2 --- e_[Ba/H] Error in BaII abundance 351-355 F5.2 --- [La/H] ? LaII abundance 357-360 F4.2 --- e_[La/H] ? Error in LaII abundance 362-366 F5.2 --- [Nd/H] NaII abundance 368-371 F4.2 --- e_[Nd/H] Error in NdII abundance 373-377 F5.2 --- [Eu/H] ? EuII abundance 379-382 F4.2 --- e_[Eu/H] ? Error in EuII abundance --------------------------------------------------------------- Acknowledgements: Katia Biazzo, katia.biazzo(at)inaf.it References: Covino et al., Paper I 2013A&A...554A..28C 2013A&A...554A..28C, Cat. J/A+A/554/A28 Desidera et al., Paper II 2013A&A...554A..29D 2013A&A...554A..29D Esposito et al., Paper III 2014A&A...564L..13E 2014A&A...564L..13E Desidera et al., Paper IV 2014A&A...567L...6D 2014A&A...567L...6D Damasso et al., Paper V 2015A&A...575A.111D 2015A&A...575A.111D, Cat. J/A+A/575/A111 Sozzetti et al., Paper VI 2015A&A...575L..15S 2015A&A...575L..15S, Cat. J/A+A/575/L15 Borsa et al., Paper VII 2015A&A...578A..64B 2015A&A...578A..64B, Cat. J/A+A/578/A64 Mancini et al., Paper VIII 2015A&A...579A.136M 2015A&A...579A.136M, Cat. J/A+A/579/A136 Damasso et al., Paper IX 2015A&A...581L...6D 2015A&A...581L...6D Biazzo et al., Paper X 2015A&A...583A.135B 2015A&A...583A.135B, Cat. J/A+A/583/A135 Malavolta et al., Paper XI 2016A&A...588A.118M 2016A&A...588A.118M, Cat. J/A+A/588/A118 Benatti et al., Paper XII 2017A&A...599A..90B 2017A&A...599A..90B, Cat. J/A+A/599/A90 Esposito et al., Paper XIII 2017A&A...601A..53E 2017A&A...601A..53E Bonomo et al., Paper XIV 2017A&A...602A.107B 2017A&A...602A.107B, Cat. J/A+A/602/A107 Gonzalez-Alvarez et al., Paper XV 2017A&A...606A..51G 2017A&A...606A..51G Mancini et al., Paper XVI 2018A&A...613A..41M 2018A&A...613A..41M, Cat. J/A+A/613/A41 Lanza et al., Paper XVII 2018A&A...616A.155L 2018A&A...616A.155L, Cat. J/A+A/616/A155 Barbato et al., Paper XVIII 2019A&A...621A.110B 2019A&A...621A.110B, Cat. J/A+A/621/A110 Borsa et al., Paper XIX 2019A&A...631A..34B 2019A&A...631A..34B, Cat. J/A+A/631/A34 Pino et al., Paper XX 2020ApJ...894L..27P 2020ApJ...894L..27P Carleo et al., Paper XXI 2020A&A...638A...5C 2020A&A...638A...5C, Cat. J/A+A/638/A5 Guilluy et al., Paper XXII 2020A&A...639A..49G 2020A&A...639A..49G Benatti et al., Paper XXIII 2020A&A...639A..50B 2020A&A...639A..50B, Cat. J/A+A/639/A50 Barbato et al., Paper XXIV 2020A&A...641A..68B 2020A&A...641A..68B Baratella et al., Paper XXV 2020A&A...640A.123B 2020A&A...640A.123B Di Maio et al., Paper XXVI 2020A&A...641A..68B 2020A&A...641A..68B Damasso et al., Paper XXVII 2020A&A...642A.133D 2020A&A...642A.133D, Cat. J/A+A/642/A133 Carleo et al., Paper XXVIII 2021A&A...645A..71C 2021A&A...645A..71C Scandariato et al., Paper XXIX 2021A&A...646A.159S 2021A&A...646A.159S Rainer et al., Paper XXX 2021A&A...649A..29R 2021A&A...649A..29R Borsa et al., Paper XXXI 2021A&A...653A.104B 2021A&A...653A.104B Fossati et al., Paper XXXII 2022A&A...658A.136F 2022A&A...658A.136F Borsa et al., Paper XXXIII 2022A&A...663A.141B 2022A&A...663A.141B Maldonado et al., Paper XXXIV 2022A&A...663A.142M 2022A&A...663A.142M Mancini et al., Paper XXXVI 2022A&A...664A.162M 2022A&A...664A.162M, Cat. J/A+A/664/A162 Nardiello et al., Paper XXXVII 2022A&A...664A.163N 2022A&A...664A.163N, Cat. J/A+A/664/A163 Guilluy et al., Paper XXXVIII 2022A&A...665A.104G 2022A&A...665A.104G Carleo et al., Paper XXXIX 2022AJ....164..101C 2022AJ....164..101C Naponiello et al., Paper XL 2022A&A...667A...8N 2022A&A...667A...8N Pino et al., Paper XLI 2022A&A...668A.176P 2022A&A...668A.176P Damasso et al., Paper XLII 2023A&A...672A.126D 2023A&A...672A.126D Maldonado et al., Paper XLIII 2023A&A...674A.132M 2023A&A...674A.132M Rainer et al., Paper XLIV 2023A&A...676A..90R 2023A&A...676A..90R, Cat. J/A+A/676/A90 Fossati et al., Paper XLV 2023A&A...676A..99F 2023A&A...676A..99F Pinamonti et al., Paper XLVI 2023A&A...677A.122P 2023A&A...677A.122P, Cat. J/A+A/677/A122 Sozzetti et al., Paper XLVII 2023A&A...677L..15S 2023A&A...677L..15S Turrini et al., Paper XLVIII 2023A&A...679A..55T 2023A&A...679A..55T Mantovan et al., Paper XLIX 2024A&A...682A.129M 2024A&A...682A.129M, Cat. J/A+A/682/A129 Carleo et al., Paper L 2024A&A...682A.135C 2024A&A...682A.135C Claudi et al., Paper LI 2024A&A...682A.136C 2024A&A...682A.136C Di Maio et al., Paper LII 2024A&A...683A.239D 2024A&A...683A.239D Ruggieri et al., Paper LIII 2024A&A...684A.116R 2024A&A...684A.116R, Cat. J/A+A/684/A116 Guilluy et al., Paper LIV 2024A&A...686A..83G 2024A&A...686A..83G Basilicata et al., Paper LV 2024A&A...686A.127B 2024A&A...686A.127B Sicilia et al., Paper LVI 2024A&A...687A.143S 2024A&A...687A.143S Montalto et al., Paper LVII 2024A&A...687A.226M 2024A&A...687A.226M, Cat. J/A+A/687/A226 Ruggieri et al., Paper LVIII 2024A&A...689A.235R 2024A&A...689A.235R, Cat. J/A+A/689/A235 Damasso et al., Paper LIX 2024A&A...690A.235D 2024A&A...690A.235D, Cat. J/A+A/690/A235 D'Arpa et al., Paper LX 2024A&A...690A.237D 2024A&A...690A.237D Filomeno et al., Paper LXI 2024A&A...690A.370F 2024A&A...690A.370F
(End) Patricia Vannier [CDS] 29-Jan-2026
The document above follows the rules of the Standard Description for Astronomical Catalogues; from this documentation it is possible to generate f77 program to load files into arrays or line by line